

Journal of Experimental Botany, Vol. 00, No. 0 pp. 1–15, 2025 https://doi.org/10.1093/jxb/eraf438 Advance Access Publication 3 October 2025

RESEARCH PAPER

A conserved AINTEGUMENTA-REVOLUTA module is a candidate to regulate carpel development in lychee

Huimin Hu^{1,†}, Xurong Fan^{1,†}, Qiuping Wu^{1,†}, Yanyang Liang¹, Yaxuan Xiao¹, Chengjie Chen², Fengqi Wu¹, Jiakun Zheng¹, Rui Xia^{1,}, Jing Xu^{1,*}, Yanwei Hao^{1,*}, and Zaohai Zeng^{1,*},

Received 13 May 2025; Accepted 22 September 2025

Editor: Rainer Melzer, University College Dublin, Ireland

Abstract

The lychee industry is vital to agricultural economies, boosting the livelihood of farmers and regional growth. However, instability of flowering causes yield fluctuations, severely limiting industry sustainability. Stable pistil development in female flowers is essential for yield improvement, yet its molecular regulation remains poorly understood. Although APETALA2 (AP2) transcription factors regulate floral organ differentiation and pistil development, their functional role in woody perennials such as lychee is uncharacterized. In this study, two AP2 genes (LITCHI007109 and LITCHI010784) were found to exhibit high and specific expression in carpels. LITCHI007109, designated as LcANT1, is an ortholog of Arabidopsis AINTEGUMENTA (ANT). We next systematically identified the direct downstream target genes of LcANT1, the set of which were significantly enriched in biological processes related to floral organ development and carpel morphology. Notably, the carpel development-related gene LITCHI024703 (LcREV) exhibited a high level of co-expression with LcANT1. We found that the LcANT1 protein can directly bind to the promoter region of LcREV. Further evolutionary analysis indicates that the ANT-REV regulatory module is highly conserved in angiosperms, especially in Sapindaceae. Our findings establish a novel theoretical framework for understanding female flower development in lychee and offer critical gene resources and regulatory networks for molecular breeding strategies aimed at developing high-yield, stable cultivars.

Keywords: AP2 transcription factor, carpel development, DAP-seq, floral sex differentiation, lychee.

Abbreviations: AG, AGAMOUS; AIL, AINTEGUMENTA-like; ANT, AINTEGUMENTA; Ant, aintegumenta; AP2, APETALA2; DREB, dehydration-responsive element-binding proteis; ERF, Ethylene Response Factor; GO, Gene Ontology; RT-qPCR, quantitative reverse transcription-PCR; TSS, transcription start site; WGCNA, weighted gene co-expression network analysis.

¹ State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China ² State Key Laboratory of Tropical Crop Breeding, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China

^{*} Correspondence: jxu@scau.edu.cn, yanweihao@scau.edu.cn, or zengzh@scau.edu.cn

[†] These authors contributed equally to this work.

Introduction

Lychee (Litchi chinensis Sonn.), a precious fruit tree originating from Yunnan, China, holds a significant position among global fruit crops due to its unique flavor and nutritional value (Zhao et al., 2020; Hu et al., 2022). However, the lychee industry has long faced significant challenges, including low overall yields and unstable production. Notably, the 'full blooms, half fruits' paradox in lychee production is primarily attributed to unstable flowering and severe physiological fruit drop during fruit development (Abbas et al., 2022). The process of flower development in lychee is highly complex, with female flowers, male flowers, and functional male flowers co-existing within the same inflorescence of the same plant. While the pistils of female flowers eventually develop into fruits, the pistils of male flowers degenerate completely in later stages, and those of functional male flowers remain underdeveloped (Robbertse et al., 1995; Guan et al., 2021). Therefore, identifying the genes that regulate stable pistil development in female flowers is of great theoretical and practical significance for improving lychee yield and breeding new varieties with high and stable production.

The APETALA2 (AP2) gene, a member of the APETALA2/Ethylene Response Factor (AP2/ERF) superfamily (Wessler, 2005), plays a vital role in plant growth and development, including floral development, somatic embryogenesis, meristem activity, and leaf growth, while also regulating hormone signaling and stress responses (Licausi et al., 2013; Xie et al., 2019; Wang et al., 2022). Based on the number of AP2 domains and other DNA-binding domains, the AP2/ ERF superfamily is divided into five subfamilies: AP2; dehydration-responsive element-binding proteins (DREB); ethylene-responsive element-binding proteins Related to ABI3/VP (RAV); and Soloist (Feng et al., 2020). Among them, the AP2 subfamily is distinguished by its two highly similar and tandemly repeated AP2 domains. The AP2 subfamily can be further classified into three subgroups: euAP2 (characterized by the miR172-binding motif), euANT, and basalANT, based on differences in the amino acid sequences of the AP2 domains and nuclear localization signals (Men et al., 2021). In contrast, other subfamilies such as ERF and DREB contain only a single AP2 domain, with their primary distinction lying in the differences at the 14th and 19th amino acid residues (Men et al., 2021). The RAV subfamily, on the other hand, includes one AP2 domain and one B3 domain (J. Li et al., 2023). As the smallest group within the AP2/ERF superfamily, the Soloist subfamily exhibits significant differences in protein sequence and gene structure compared with the other subfamilies (X. Li et al., 2023).

AP2 genes play a pivotal role in floral development in plants. In Arabidopsis, AP2 homologs are critical for the establishment of floral meristems, the development of floral organs, and the regulation of flowering time. During the initial stages of floral development, AP2 collaborates with meristem identity genes such as APETALA1 (AP1), CAULIFLOWER (CAL), and LEAFY (LFY) to collectively determine the identity of the floral meristem, thereby initiating floral differentiation (Huala and Sussex, 1992; Okamuro et al., 1997; Pineiro and Coupland, 1998). In the ABCDE model of floral organ development, AP2 functions as an A-class gene that not only participates in the developmental regulation of sepals but also co-regulates petal formation with the B-class genes AP3 and PISTILLATA (PI) (Weigel and Meverowitz, 1994). Additionally, it inhibits the development of stamens and carpels by antagonizing the action of the C-class gene AGAMOUS (AG) (Shannon and Meeks-Wagner, 1993; Krogan et al., 2012; Huang et al., 2017). In Arabidopsis, mutations in the AP2 gene lead to the transformation of floral organs into reproductive organs, manifested as the homeotic transformation of sepals and petals into carpels and stamens, respectively (Kunst et al., 1989). In the sixth stage of flower development, AG terminates the activity of WUSCHEL (WUS) by acting directly on the WUS locus or indirectly on its target gene KNUCKLES (KNU), thereby promoting floral determinacy and determining the number of carpels (Bollier et al., 2018). Furthermore, the miR172-AP2 module regulates flowering time by inhibiting the expression of key flowering genes SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and AG (Yant et al., 2010).

AINTEGUMENTA (ANT), as a member of the AP2 subfamily, plays a crucial role in various developmental processes in Arabidopsis, including ovule development, floral organ formation, carpel development, and the determination of floral organ size (Krizek et al., 2021). A female-sterile mutant, aintegumenta (ant), exhibits a phenotype characterized by carpel separation, impaired ovule development, a lack of integument development, and a blockage of megasporogenesis at the tetrad stage (Klucher et al., 1996; Krizek, 1999; Liu et al., 2000; Mizukami and Fischer, 2000). Moreover, ANT and REV in Arabidopsis collaborate to maintain morphogenetic balance during the development of the carpel marginal meristem (CMM), although the precise mechanisms remain unclear (Nole-Wilson et al., 2010). The ant mutant in Arabidopsis also displayed reduced floral organ and leaf size, while overexpression of ANT resulted in enlarged floral organs, siliques, and leaves (Mizukami and Fischer, 2000). It was found that the changes in the expression levels of ANT in apple are consistent with the changes in the expression of cell cycle genes A- and B-type CYCLIN and B-type CYCLIN-DEPENDENT KINASE (CDKB) and MdDEL1 (Dash and Malladi, 2012). Further it was proved that ANT participates in the auxindependent regulatory process of AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE (ARGOS) in Arabidopsis, regulating the final size of organs through modulation of cell growth, proliferation, and meristematic capacity

(Hu et al., 2003). Through quantitative reverse transcription— PCR (RT-qPCR) analysis, seven AINTEGUMENTA-like (AIL) genes were identified in Arabidopsis, among which AIL1, AIL5, AIL6, and AIL7 are expressed in the inflorescence, with AIL5 showing a similar expression pattern to ANT (Nole-Wilson et al., 2005). This suggests that AIL genes play regulatory roles in the development of the meristem and are involved in the regulatory pathways of ovule and floral organ development.

Despite the extensive research conducted on the role of AP2 in the development of floral organs in plants, studies focusing on its function in perennial fruit trees such as lychee remain largely unexplored. In this study, we successfully identified two AP2 genes, LITCHI007109 and LITCHI010784, that are specifically and highly expressed in the carpels of female flowers, through weighted gene co-expression network analysis (WGCNA) of transcriptome data. Phylogenetic analysis indicated that LITCHI007109 (LcANT1) is an ortholog of ANT in Arabidopsis. Moreover, DNA affinity purification sequencing (DAP-seq) analysis further revealed that LcANT1 can directly target genes related to floral organ development and carpel development, with LcANT-LcREV representing a potential conserved pathway for regulating carpel development in lychee. These findings not only provide a solid foundation for further investigation into the regulatory role of lychee AP2 genes in the development of female flowers, but also offer important theoretical support and candidate gene resources for the molecular breeding of varieties with high and stable yields.

Materials and methods

Identification of LcAP2 subfamily genes in lychee

To identify the AP2 gene family members in lychee, GffRead was used to translate the coding sequences (CDSs) of all transcripts into protein sequences (Pertea and Pertea, 2020). TBtools V2.069 was utilized to extract representative transcript numbers from the genome annotation file (Chen et al., 2023), while SeqKit was used to retrieve the corresponding transcript CDSs from all protein sequences (Shen et al., 2016). The protein sequences of 17 AP2 gene family members from Arabidopsis thaliana were downloaded from PlantTFDB (https://planttfdb.gao-lab.Org/ family.php?sp=Ath&fam=AP2) as reference sequences (Jin et al., 2017). Subsequently, BLASTP was used to search for potential AP2 genes within the lychee genome (Altschul et al., 1990), with results further validated by querying the UniProtKB/Swiss-Prot database to mitigate false positives. Then, the CDD (https://www.ncbi.nlm.nih.gov/cdd) (Marchler-Bauer and Bryant, 2004) and Pfam (http://pfam-legacy.xfam.org/) (Mistry et al., 2021) databases were utilized to identify the conserved structural domains, ensuring a focus on members possessing two AP2 domains of AP2 members in lychee.

Intron-exon organization, gene structure, protein structure, and motif analysis of LcAP2 genes

MUSCLE (Edgar, 2004) was utilized to perform multiple sequence alignment of protein sequences from 16 AP2 genes in lychee, followed by TrimAL (Capella-Gutiérrez et al., 2009) to eliminate poorly aligned regions. IQtree2 was employed to construct a phylogenetic tree using the

maximum likelihood method with bootstrap testing, assigning a bootstrap value of 1000. TBtools V2.069 (Chen et al., 2023) was employed to analyze the exons and introns of each LcAP2 member. Subsequently, the NCBI Batch CD-search (https://www.ncbi.nlm.nih.gov/Structure/ bwrpsb/bwrpsb.cgi) was utilized to detect conserved structural domains. The MEME-Suite 5.5.5 (http://meme-suite.org/meme/tools/meme) (Bailey et al., 2015) was employed to analyze sequence motifs, thereby elucidating the differences among LcAP2 gene family members. The structure, conserved structural domains, and motif information of LcAP2 genes were visualized using TBtools V2.069 (Chen et al., 2023). The highly accurate protein structures of AtANT and LcANT domains were obtained from the AlphaFold Protein Structure Database (https:// alphafold.ebi.ac.uk/).

Chromosomal distribution and gene duplication events of LcAP2

The positional information of LcAP2 family members was retrieved from the lychee genome annotation file. The gene duplication events were analyzed using MCScanX (Wang et al., 2012) with default parameters. The collinear relationships among LcAP2, AtAP2, and OsAP2 gene family members were analyzed by using MCScanX. TBtools V2.069 was used to visualize all the results (Chen et al., 2023).

RNA-seq data analysis, weighted gene co-expression network analysis, and Gene Ontology analysis

Two sets of transcriptome data were archived in NCBI under the accession number GSE182447 (Guan et al., 2021). Fastp (Chen et al., 2018) was employed for quality control and the removal of adapters from the raw RNA-seq data. Subsequently, STAR (Dobin et al., 2013) was utilized to map the clean reads to the lychee genome, while StringTie (Pertea et al., 2015) was applied to normalize transcript expression levels to transcripts per million (TPM) values. The construction of the network and detection of modules were performed by using WGCNA (Langfelder and Horvath, 2008). Gene Ontology (GO) enrichment analysis was performed with the 'TopGO' and 'GO.db' packages. Plots were drawn using the 'ggplot2' package of R (Villanueva and Chen, 2019).

DNA affinity purification sequencing and data analysis

The DAP-seq experiment was performed according to the previously published protocol (Zhang et al., 2024). Initially, 5 µg of genomic DNA was extracted from the young leaves of lychee and fragmented into 200 bp segments using ultrasonication. These fragments were ligated with Illumina-based sequencing adaptors to create a DNA library. The CDS of LcANT1 was cloned into the pIX-Halo vector and translated in vitro utilizing the TNT® SP6 High-Yield Wheat Germ Protein Expression System (L3260) from Promega Corporation. Primers are listed in Supplementary Table S1. Following the incubation of the lychee genomic DNA library with HALO-tagged LcANT1, the DNA-protein complex was eluted to be amplified with indexed primers, followed by sequencing at Novogene (Beijing, China).

Bowtie (Langmead, 2010) was used to align the clean reads to the lychee genome, while MACS (Zhang et al., 2008) was utilized to identify the binding sites of AP2, using the BAMPE mode to discern peak values. TBtools on Linux was utilized to extract the sequences located 50 bp upstream and downstream of the binding sites, and MEME-Chip (Bailey et al., 2015) was applied to enrich the combined sequences. FIMO (Grant et al., 2011) was used to identify binding regions that contain conserved motifs. Genes exhibiting peaks within 2 kb upstream of the transcription start site (TSS) or downstream of the transcription termination site (TTS) were designated as target genes of AP2.

4 | Hu et al.

The logical implementation of the Python package ReCallpeaks

In response to the analytical requirements of this project, we have meticulously developed the DAP-seq data analysis tool, ReCallpeaks, from the ground up using Python. ReCallpeaks was specifically optimized for data pertaining to transcription factors with low DNA binding capacity in DAP-seq experiments. Initially, genome coverage files in bedgraph format were generated for each sample via the bamCoverage function of Bamtools, based on the BAM file for each dataset (Barnett et al., 2011). Subsequently, the coverage of genes underwent repeated processing to obtain an average according to a designated sliding window length. The 'scipy.signal.find_peaks' method was used to identify potential binding signals, thereby eliminating regions devoid of read enrichment based on a pre-determined threshold. Upon isolating the regions with binding signals, the samtools depth method (Li et al., 2009) was utilized to calculate the sequencing depth for each base within these regions. The 'scipy.signal.find_peaks' method was then applied once more to pinpoint the positions where the binding signal peaks manifest. Extending 50 bp on either side of these positions delineates the candidate binding sites for transcription factors. TBtools was utilized to extract the sequences of these target regions under Linux (Chen et al., 2023). The MEME-ChIP tool was employed to enrich the potential binding sequences for transcription factors (Bailey et al., 2015), while FIMO was utilized to detect binding regions containing conserved motifs (Grant et al., 2011). The source code was hosted on GitHub (https://github.com/FanXuRong/ ReCallPeaks.git).

Phylogenetic analysis and collinear relationships analysis

Protein sequences of 26 representative angiosperm species of ANT were downloaded from PlantTFDB (https://planttfdb.gao-lab.org/). The genomic and annotation files for Sapindaceae species were downloaded from SapBase (http://www.sapindaceae.com/Download.html) and other eudicots species were collected from the NCBI database. Gffread (Pertea and Pertea, 2020) was utilized to extract all the protein sequences, and Diamond (Buchfink et al., 2015) was utilized to perform homology comparison in ultra-sensitive mode with an e-value set at 100. Orthogroup, single-copy ortholog sequences, and species trees were inferred using Orthofinder2 (v2.5.4) (Emms and Kelly, 2019) with parameters '-M msa -S diamond'. MUSCLE was utilized to perform multiple sequence alignment, followed by TrimAL to eliminate poorly aligned regions (Edgar, 2004; Capella-Gutiérrez et al., 2009). Phylogenetic analysis was conducted using IQtree2, employing the maximum likelihood method along with bootstrap testing, with a bootstrap value of 1000. Homologous gene pairs were identified by JCVI (v1.2.7) (Tang et al., 2008), and the collinear relationships between species were visualized with its graphics module. The conserved motif logos were generated with the WebLogo (https://weblogo.threeplusone.com/).

Quantitative reverse transcription-PCR

RT–qPCR was conducted with Promega GoTaq® qPCR Master Mix (A6001) in a BioRad CFX384 Real-Time PCR Detection System, with each assay being replicated three times both biologically and technically. Actin was used as the reference gene according to the study published by Zhong et al. (2011). LcANT1 and LcREV primers were designed by using primer3 (https://www.primer3plus.com) and are listed in Supplementary Table S2. The specificity of the primers was tested with melting curves and resequencing of PCR products. The relative expression was calculated using the comparative 2 $^{-\Delta\Delta Ct}$ method (Pfaffl, 2001).

Electrophoretic mobility shift assay

The coding sequence of *LcANT1* was cloned into the pGEX-4T-1 vector using the primers listed in Supplementary Table S3 and then was expressed in *Escherichia coli* Rosseta (DE3). Expression and purification of

the recombinant protein were performed according to the manufacturer's instructions for the GST-tag Protein Purification Kit (Beyotime). The electrophoretic mobility shift assay (EMSA) was conducted using the LightShift® Chemiluminescent EMSA Kit (Thermo Fisher Scientific) (Zhang et al., 2024). The double-stranded probes with 3' biotin labeling were made by annealing separately synthesized strands. The probes used for EMSA are listed in Supplementary Table S3.

Results

LITCHI007109 and LITCHI010784 are expressed specifically in the carpel of lychee female flowers

Lychee is a monoecious species that produces both male and female flowers on the same plant, including male flowers with entirely degenerated pistils, female flowers with aborted stamens, and functional male flowers exhibiting incomplete pistil development (Fig. 1A). In male and functionally male flowers, the ovaries are small and eventually degenerate, whereas in female flowers, the ovaries are larger and ultimately develop into the lychee fruit. Therefore, the stable development of female flower ovaries is one of the key factors determining lychee yield. Thus, understanding the molecular mechanisms of ovary development has important theoretical significance and practical value. Although *AP2* genes are known to play essential roles in floral organ development, their involvement in regulating ovary development in lychee remains unclear.

To screen for key AP2 genes involved in the ovary development of lychee female flowers, we identified 16 LcAP2 genes (Supplementary Table S4) from the lychee genome using BLASTP and Hidden Markov Model (HMM) search based on the AP2 domain (Pfam ID: PF00847). A phylogenetic analysis of the AP2 gene family was subsequently conducted (Fig. 1B; Supplementary S1A, B). Following the established classification systems for AP2 genes in Arabidopsis and rice (Kim et al., 2006; Zhao et al., 2019), the lychee AP2 genes were classified into three analogous groups: euAP2, euANT, and basalANT. Subsequently, to explore the potential roles of LcAP2 genes in flower development, we performed an expression pattern analysis of these genes utilizing published RNA-seq data (Guan et al., 2021). The results indicated that among the 16 AP2 genes, LITCHI027031, LITCHI024773, LITCHI027926, LITCHI018533, LITCHI006915, LITCHI031776, and LITCHI016016 were expressed in the stamen and carpel of female, male, and functional male flowers, while LITCHI002341, LITCHI024007, LITCHI017889, and LITCHI005122 showed low or no expression in all tissues. Notably, five AP2 genes (LITCHI016388, LITCHI007217, LITCHI030251, LITCHI010784, and LITCHI007109) exhibited high expression levels in female flowers. Strikingly, LITCHI007109 and LITCHI010784, namely LcANT1 and LcANT2, displayed exclusive, tissue-specific up-regulation in carpels (Fig. 1B), implicating their potential functional significance in carpel development during lychee female flower formation.

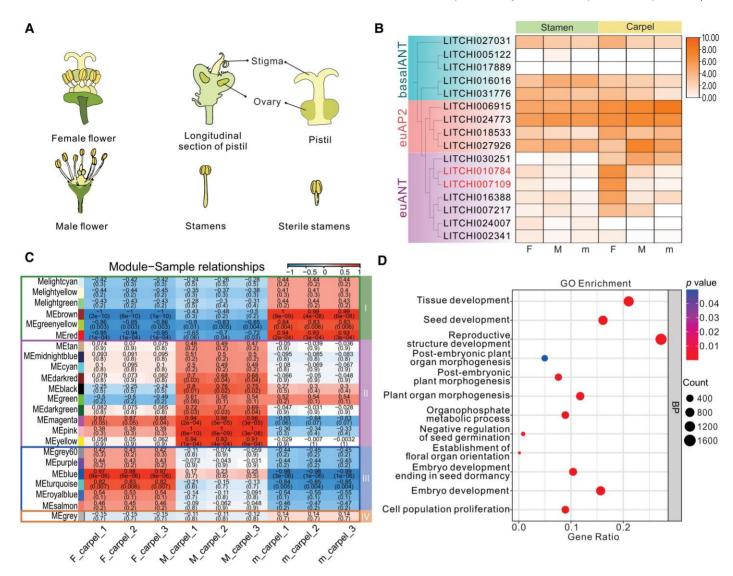


Fig. 1. LITCHI007109 and LITCHI010784 exhibit expression specificity in the carpel of lychee female flowers. (A) Schematic diagram of different tissues of lychee at full-bloom stage. (B) Expression profiles of LcAP2 at different stages of various lychee flower tissues. F, female flower; M, male flower; m, functional male flower. LITCHI007109 (LcANT1) showed the highest expression in the carpel of female flowers. (C) Module-trait relationship of WGCNA. Twenty-three different modules were grouped for all expressed genes. Colors and numbers indicate the correlation coefficient between gene expression and compound contents. Numbers in parentheses show the P-values of the significance. (D) Gene Ontology (GO) enrichment analysis for genes in the MEturquoise module associated with carpel development. Fig.1A is sourced from https://www.sapindaceae.com.

To further uncover AP2 genes related to carpel development in lychee flowers, we conducted WGCNA on RNA-seq data from carpels of different flower sex types, classifying the input genes into 23 modules (Fig. 1C). Through correlation analysis of the expression patterns of module EngineGene with the samples, we found that six modules (Group 1) were relatively highly expressed in the carpel of functional male flowers, 10 modules (Group 2) were relatively highly expressed in the carpels of male flowers, and six modules (Group 3) were primarily highly expressed in the carpels of female flowers (Fig. 1C). Additionally, GO enrichment analysis based on the genes in Group 3 showed that these genes were

significantly enriched in pathways such as seed development, reproductive structure development, plant organ morphogenesis, floral organ orientation, and cell population proliferation (Fig. 1D). Notably, the AP2 genes LcANT1 and LcANT2 were identified within the MEturquoise module, exhibiting specific high expression in the carpel of female flowers, while its expression was nearly undetectable in the ovary of male and functional male flowers. Therefore, it is hypothesized that LcANT1 and LcANT2 may be involved in regulating the carpel development of lychee female flowers. Moreover, most of the genes in the MEturquoise module were highly expressed in female flowers, further supporting this inference.

LITCHI007109 (LcANT1) is an orthologous gene of Arabidopsis ANT

To explore the origin and function of LcANT1 and LcANT2 in lychee, we selected 21 angiosperm species characterized by hierarchical evolutionary relationships, extending from the basal angiosperm Amborella trichopoda to various species within the Sapindaceae family (Fig. 2A). Subsequently, we identified the orthologs of LcANT1 and LcANT2 utilizing OrthoFinder. As depicted in Fig. 2B, the ANT homologous gene has only one copy in basal angiosperms such as A. trichopoda and Nymphaea tetragona, and retains a single-copy form in A. thaliana. However, it has stably differentiated into two copies in Rosaceae species (Fig. 2A). Among 21 angiosperms, LcANT1 (LITCHI007109) belongs to the same orthogroup as AtANT, which contains 65 genes (Fig. 2B), most of which are annotated as ANT homologous genes in the NCBI database, indicating that they share common ancestral genes. Further analysis revealed that both LcANT1 and AtANT contain two highly conserved DNA-binding AP2 domains (Fig. 2C; Supplementary Fig. S2), belonging to euANT. Additionally, the three-dimensional structure of the domains in all LcAP2 proteins comprises an antiparallel three-stranded β -sheet (β 1, β 2, and β 3), accompanied by an α -helix that aligns approximately parallel to the β -sheet (Fig. 2D).

Previous studies have elucidated that the AtANT gene plays a crucial role in regulating carpel development in A. thaliana; single ant-1, ant-3, ant-4, and ant-9 mutants exhibit severe defects in ovule morphogenesis, including the absence of integuments and a block in embryo sac development (Elliott et al., 1996). Additionally, the number of ovules produced by these mutant plants is markedly reduced compared with that of wild-type plants (Klucher et al., 1996). By integrating these results with the expression profile of lychee floral organs and WGCNA, we hypothesized that LcANT1 and LcANT2 may influence development of female flower carpels in lychee by controlling the expression of prospective downstream genes. Moreover, phylogenetic analysis reveals that LcANT1 is a ortholog of AtANT, whereas LcANT2 is categorized as a paralog (Fig. 2B). To better understand the regulatory network of LcANTs in lychee carpel development, we chose LcANT1 for our next analysis due to its closer relationship to AtANT and potentially more conserved functions.

DAP-seg showed that LcANT1 targets multiple plant growth and development pathways, including carpel development

To identify the biological pathways potentially regulated by LcANT1, we screened for genes that LcANT1 may target within the lychee genome by using DAP-seq. Due to the relatively weak binding peaks, many potential binding sites for LcANT1 were overlooked during the initial peak calling using the MACS2 software. To accurately identify the binding motifs of LcANT1, we developed a Python package called ReCallpeaks (Fig. 3A, see the Materials and methods for details). We specified a distance of 10 kb between binding sites, set the peak height to be no less than 20 and no greater than 350, and defined that the peak value of the experimental group must be more than twice that of the control group. These parameters were established to avoid false positives caused by repetitive sequences and erroneous read mappings. After processing the data with the ReCallpeaks package, we identified 16 099 potential binding sites for LcANT1, among which 7497 were located in intergenic regions, 5494 in the exonic regions of genes, 1689 in intronic regions, 734 in the upstream 2000 bp region of genes (promoter), and 685 in the downstream 2000 bp region (Fig. 3B).

To determine the binding motif of LcANT1, MEME-ChIP analysis was performed on the base sequences of all binding regions (extended by 50 bp on each side of the binding site), and a highly enriched binding motif was identified (Fig. 3C). This binding motif is similar to ZmANT1 in maize (Liu et al., 2020) and also resembles the AtANT-binding motif in Arabidopsis found in JASPAR (https://jaspar.elixir.no/). Then, we utilized FIMO to scan all binding regions within the DAP-seq data, revealing that 998 genes, along with their 2000 bp upstream and downstream regions, contain target sites for this binding motif. Moreover, GO enrichment analysis was conducted on 998 genes, and it was found that these genes were enriched in reproductive system development, regulation of flowering, flower development, flower organ development, and carpel development pathways (Fig. 3D), indicating that LcANT1 may regulate the expression of these genes and affect the ovary development of lychee female flowers. In addition, by classifying these GO entries, it was found that these genes are also involved in pathways such as cell wall, lipid metabolism, secondary metabolism, development, transport, and response to hormone (Fig. 3E). Most of the entries related to development are enriched in pathways involved in flower development, also including fruit, seed, shoot, leaf, organ, and root development (Fig. 3E), suggesting that LcANT1 can also participate in regulating these tissue and development processes, which is consistent with previously reported ANT-regulated pathways.

LcANT1 may regulate carpel development in lychee flowers by influencing the expression of LcREV

To further identify downstream target genes of LcANT1 in the ovary of female lychee flowers, we integrated the DAP-seq-identified binding genes within Module 3 based on previous WGCNA (Fig. 1C), which was specific to the carpel of female flowers, resulting in the identification of 400 overlapping genes (Fig. 4A). Next, to investigate the consequential role of these 400 target genes, we performed a GO enrichment analysis (Fig. 4B). Our results demonstrated that these shared target genes play significant roles across a broad spectrum of lychee flowers and reproductive development.

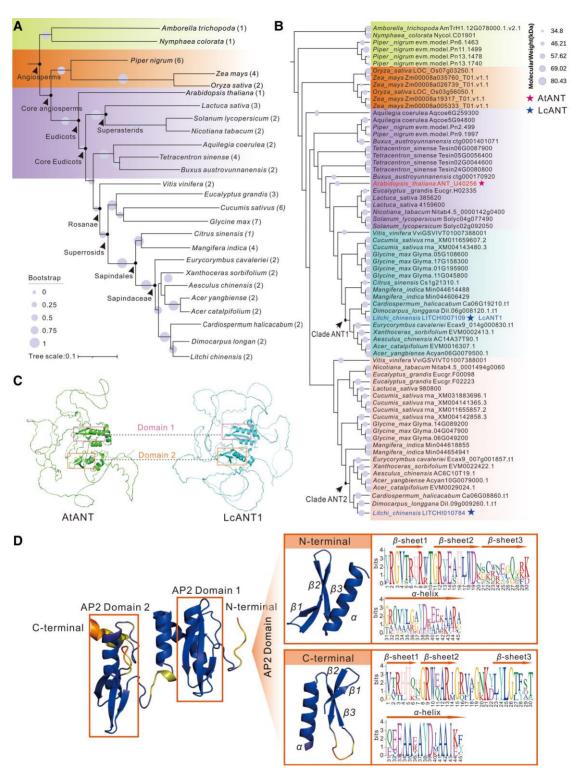


Fig. 2. Phylogenetic analysis of ANT homologs across the 26 angiosperms species. (A) Phylogenetic analysis of angiosperm species was conducted using single-copy genes extracted from the entire genome, with the numbers of ANT genes indicated in parentheses. (B) A phylogenetic tree was constructed based on the protein sequences of all ANT genes obtained from 26 representative species. The red star represents ANT genes from Arabidopsis thaliana, and blue stars indicate two ANT genes from lychee. (C) The prediction of protein folding for AtANT and LcANT1. The AP2 domains were visualized using different color schemes for alignment. (D) Three-dimensional structural models of AP2 domains complexed with the DNA double helix were generated using AlphaFold2, alongside the sequence logo of AP2 domains produced by MEME. The heights of the symbols within the stack signify the relative frequency of each amino acid at that particular position.

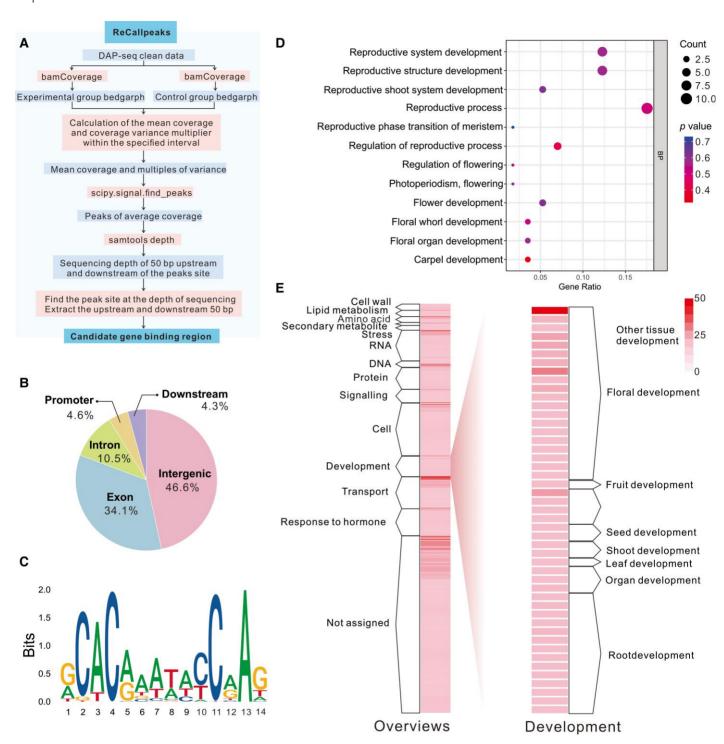


Fig. 3. DAP-seq showed that LcANT1 targets multiple plant growth and development pathways, including carpel development. (A) The flowchart of Recall peaks. (B) Analysis of LcANT1-enriched regions in the DAP-seq assay. The pie chart shows the percentage distribution of LcANT1-binding peaks in each category. (C) LcANT1-binding motif identified by DAP-seq analysis. (D) Gene Ontology (GO) enrichment analysis of LcANT1 downstream genes identified by DAP-seq analysis. (E) GO category enrichment analysis of putative LcANT1 downstream genes in each module, including the category general overview and tissue development-related pathways. The color scale shows the enrichment score.

By integrating the results of co-expression and GO enrichment analysis, we preliminarily screened 15 genes potentially related to the development of female flower carpels in lychee

from the 400 overlapping target genes (Fig. 4C). These genes shared the same co-expression module (MEturquoise) with *LcANT1* and exhibited equivalent or reverse expression

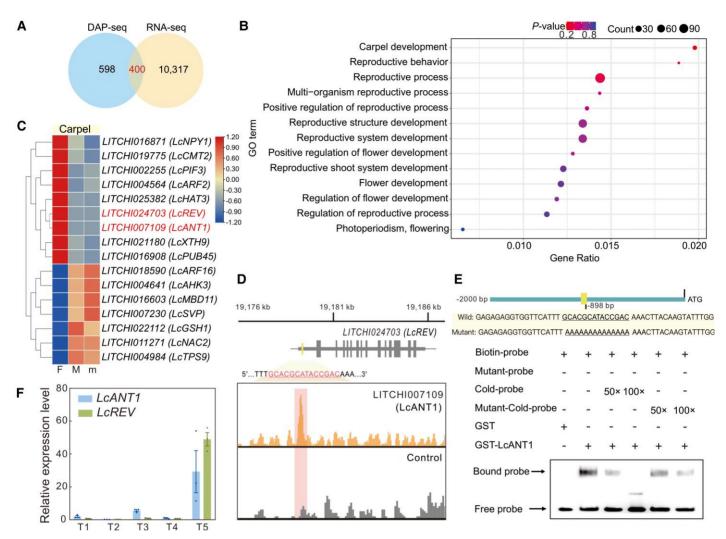


Fig. 4. LcANT1 regulates the transcription of LcREV. (A) Venn diagram assessing the count of key genes identified by DAP-seg and RNA-seg analysis. 400 represents the count of shared key genes. (B) Gene Ontology (GO) enrichment analysis on the overlapping genes between the downstream target genes identified by DAP-seq and the genes in pathways related to carpel development obtained from WGCNA. (C) Genes with high expression levels in carpel development among the genes potentially targeted by LcANT1. (D) The binding peaks of LcANT1 in the promoter of LcREV. (E) Electrophoretic mobility shift assay (EMSA) showing the binding ability of LcANT1 with the promoter of LcREV in vitro. The shifted bands indicated by arrows suggest the formation of DNA-protein complexes. '+' and '-' represent the presence and absence, respectively. GST protein and a biotin probe were used as the negative control. (F) Expression pattern analysis of LcANT1 and LcREV genes using RT-qPCR across different lychee flower tissues. *P<0.05; Student's t-test. T1, 0.5-1.0 mm flower buds; T2, 1.0-1.5 mm flower buds; T3, 1.5-2.0 mm flower buds; T4, slight-bloom flowers; T5, full-bloom flowers.

patterns in the carpels of different flower varieties in lychee, suggesting that they may be regulated by LcANT1 during the development of carpels. Based on their expression patterns, the 15 genes were categorized into two groups: nine genes exhibited an expression pattern that was consistent with *LcANT1*, while the remaining six genes showed the opposite pattern. All of these genes have been reported to be involved in flower development. For instance, AHK3, a type of cytokinin receptor, was found to regulate plant organ size, flowering time, and plant longevity in Arabidopsis gain-of-function mutants (Bartrina et al., 2017). Similarly, plants lacking TPS9 consistently demonstrated delayed flowering times compared with the wild type (Tian et al., 2021). Among these 15 genes, we

identified LcREV as a homolog of the AtREV gene, which belongs to the Class III HD-ZIP family. In Arabidopsis, rev mutants produce flowers lacking full meristematic activity (Otsuga et al., 2001; Prigge et al., 2005). In addition, ant rev double mutants showed partial loss of the carpel marginal meristem (Nole-Wilson et al., 2010), highlighting the critical role of REV in carpel development. Similarly, LcREV is likely to play an important role in lychee carpel development. LcANT1 may regulate lychee carpel development by controlling the expression of LcREV. The DAP-seq results identified a binding peak in the LcREV promoter region at -898 bp, characterized bv the enriched motif (GCACGCATACCGA). Next, EMSA validated

LcANT1 could bind to this region (Fig. 4D, E). Moreover, the results of RT-qPCR showed that the expression trends of LcANT1 and LcREV were similar (Fig. 4F). In summary, the above experiments indicated that LcANT1 probably influences lychee carpel development by regulating the expression of LcREV.

The evolutionary conservation of ANT-REV in land plants

To investigate possible evolutionary conservation of the ANT-REV pathway in plants, we selected 29 representative species spanning key evolutionary nodes (including two mosses, liverwort, two gymnosperms, and 24 angiosperms, 10 of which belong to the Sapindaceae family) for orthologous gene analysis of ANT and REV. This result indicated that ANT homologs are present in the green alga Micromonas commoda, whereas REV homologs first appear in the moss Ceratodon purpureus. The above findings suggested that the ANT gene originated significantly earlier than the REV gene, and the REV pathway probably formed a stable genetic module starting from bryophytes (Fig. 5A, B).

In order to further explore the molecular basis of the interaction between ANT and REV, this study further analyzed the conservation of the regulatory elements within the REV promoter region in 24 species of angiosperms. Using the highaffinity binding motif (GCACGCATACCGAC) as a reference, the fuzznuc tool (allowing for four-base mismatches) was employed to search for potential binding sites in the promoter regions (2000 bp upstream of ATG) of the REV homologous genes in each of the 24 species. The results showed that the promoter regions of all species contained at least one potential binding site. After conducting multiple sequence alignment and motif analysis of the potential binding sites, it was found that starting from the genus Ceratodon, the interaction motif between ANT and REV exhibited a high degree of conservation of the sequence (GCACGCATACCGAC). Especially within the Sapindaceae (excluding the 1 bp difference in Aesculus and Nephelium), the binding motif showed nearly complete sequence conservation (Fig. 5C; Supplementary Table S5). This result aligns with the known characteristic that the AP2 domains of the AtANT protein cooperatively bind to DNA fragments containing such conserved motifs, which serve as potential ANT-binding sites. These findings collectively indicate profound evolutionary conservation of the ANT-REV interaction mechanism in vascular plants.

Discussion

The ANT-REV regulatory module potentially regulates floral organogenesis in lychee

As a core member of the AP2 subfamily within the AP2/ERF transcription factor family, the ANT gene in Arabidopsis exhibits a dual regulatory role in floral organ morphogenesis: it maintains the activity of the marginal meristem to influence carpel development and acts as a primary regulatory switch to coordinate cell proliferation and differentiation during organ growth. This study identified two direct ANT homologous genes (LcANT1 and LcANT2) in the lychee genome (Fig. 2). These genes encode AP2/ERF proteins with two AP2 domains, each of 60-70 amino acids (Fig. 2; Supplementary Table S4). Furthermore, phylogenetic analysis reveals that they belong to the ANT evolutionary branch (Fig. 2). To reveal the potential mechanisms by which ANT regulates the development of lychee carpels, we selected LcANT1 for DAP-seq analysis based on its closer relatedness to AtANT1, which led to the identification of 15 potential target genes (Fig. 4). Based on their expression profiles, the target genes were divided into two categories: Class I genes that are co-expressed with LcANT1 in female flower carpels (such as LcREV/LITCHI024703, LcHAT3/LITCHI025382, LcARF2/LITCHI004564) and Class II genes that exhibit a negative correlation with LcANT1 expression (such as LcNAC2/LITCHI011271, LcARF16/LITCHI018590, and LcSVP/LITCHI007230). Among the Class I genes, their Arabidopsis homolog AtREV influences gynoecia morphology partly by regulating auxin homeostasis (Nole-Wilson et al., 2010), AtHAT3 determines gynoecium symmetry through spatiotemporal regulation of auxin distribution (Carabelli et al., 2021), and AtARF2 promotes self-pollination by limiting gynoecium growth to maintain its proper position relative to the stamens, suggesting that these genes may mediate the positive regulatory function of LcANT1 (Schruff et al., 2006). In contrast, the Arabidopsis homologs of Class II genes, such as AtNAC2, inhibit the expression of the flowering promoter FT by up-regulating FLC (Zhang et al., 2018), AtARF16 plays a promoting role in stamen development (Reeves et al., 2012), and AtSVP, as a temperature-sensitive flowering inhibitor, can antagonize FT function (Hartmann et al., 2000), suggesting that LcANT1 may maintain gynoecium development advantage by inhibiting such genes.

It is worth noting that LITCHI024703 (LcREV), the homolog of AtREV, is a Class III HD-ZIP gene that has been reported to play a role in the development of the carpel marginal meristem in Arabidopsis. ANT and REV function in parallel and have overlapping roles, but the interaction between ANT and REV genes is still unclear (Nole-Wilson et al., 2010). This study demonstrated through EMSA experiments that LcANT1 can directly bind to the LcREV promoter, suggesting a potential role in the regulation of LcREV expression (Fig. 4). Interestingly, the DNA-binding site sequence of LcANT1 within the promoter of *LcREV* is highly conserved (Fig. 5). Furthermore, the exclusive expression of this ANT-REV module in lychee female flower carpels mirrors the female-specific expression and function of the CRC gene in melon carpel determinacy and male organ suppression (Zhang et al., 2022). This conserved expression pattern strongly

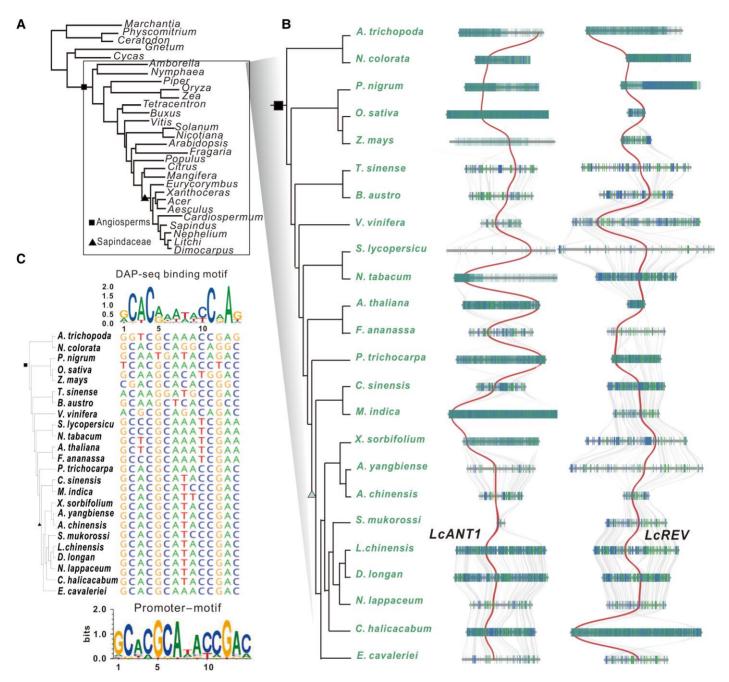


Fig. 5. The evolutionary conservation of the ANT-REV regulatory pathway in plants. (A) A phylogenetic tree of 29 species (comprising two moss, one Marchantiopsida, two gymnosperm, and 24 angiosperm species) constructed based on single-copy genes across the whole genome. (B) Collinearity analysis of ANT and REV genes in 24 angiosperm species. Syntenic blocks of ANT and REV genes are connected by red lines. (C) The conservation of the motif sequences of potential binding sites in the promoter region of REV in 24 angiosperm species.

indicates an analogous mechanism in lychee: promoting carpel formation/maintenance in female flowers, while its suppression in male flowers facilitates carpel degeneration and staminate development. Therefore, the ANT-REV pathway probably plays a central role in orchestrating floral organogenesis and contributing significantly to sex determination mechanisms in lychee (Fig. 6).

Evolutionary conservation of the ANT-REV regulatory module in land plants

Our phylogenetic analysis of ANT transcription factors across 29 representative species (including green algae, mosses, liverworts, and angiosperms) reveals their pivotal role in plant terrestrial evolution (Fig. 2). The presence of an ANT homolog

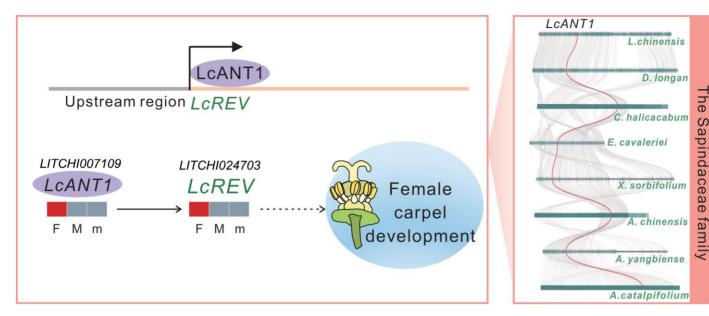


Fig. 6. A proposed model for the ANT-REV regulatory pathway within the Sapindaceae family. F, female flower; M, male flower; m, functional male flower.

in the green alga M. commoda indicates an ancient origin within the plant lineage (Supplementary Table S5). Supporting this, the moss Physcomitrella patens encodes four euANT genes, which function as molecular switches for diverse stem cell types and are auxin induced, mirroring the regulation of Arabidopsis AIL proteins (Aoyama et al., 2012; Horstman et al., 2014).

ANT homologs encode two AP2 domains, essential for DNA binding and function. Intriguingly, some researchers hypothesized that horizontal transfer of a bacterial HNH-AP2 endonuclease (bearing an AP2 domain) into plants may have initiated the origin of the AP2/ERF family (Magnani et al., 2004). Duplication of the AP2 domain preceded the divergence of the two major AP2-like lineages: euAP2 and ANT (Kim et al., 2006). The ANT clade itself subsequently diversified into basalANT and euANT subgroups. In Arabidopsis, the euANT subgroup includes eight members such as ANT, AINTEGUMENTA-LIKE 1 (AIL1), BABY BOOM (BBM), and PLETHORA (PLT) genes, while the basalANT subgroup includes genes such as WRINKLED1 (WRI1), WRI3, WRI4, and ADAP (Dipp-Álvarez and Cruz-Ramírez, 2019).

Our findings, integrated with existing evidence, underscore the pivotal evolutionary role of the ANT clade in facilitating plant terrestrialization. The conservation of this clade within the proposed ancestral toolkit for land plant life (Kim et al., 2006; Shigyo et al., 2006; Floyd and Bowman, 2007) and the lineage-specific absence of euANT and basalANT homologs in algae strongly support the hypothesis that the tandem duplication of pre-ANT and its subsequent divergence into distinct basalANT and euANT subgroups within the embryophyte ana critical constituted molecular adaptation (Dipp-Álvarez and Cruz-Ramírez, 2019). We propose that this divergence was instrumental in enabling plants to colonize terrestrial habitats. This is mechanistically plausible given the crucial functions of the ANT clade: their involvement in desiccation tolerance directly addressed a paramount challenge of the aerial environment, while their roles in establishing, maintaining, and elaborating complex multicellular structures provided the necessary anatomical innovations absent rudimentary in aquatic ancestors. The observed trend of functional specialization between the basalANT and euANT subgroups in Arabidopsis exemplifies this evolutionary role: members of the basalANT subgroup primarily regulate fundamental stress adaptation and metabolic processes such as drought response and fatty acid metabolism (Lee et al., 2009; To et al., 2012; Park et al., 2016), while euANT members are chiefly responsible for governing intricate developmental programs, such as meristem maintenance and organogenesis (Galinha et al., 2007; Yamaguchi et al., 2016; Dipp-Álvarez and Cruz-Ramírez, 2019). It is important to note that some functional overlap exists; for instance, the euANT protein AtANT itself contributes to abscisic acid signaling and drought tolerance in seeds (Meng et al., 2015). Nonetheless, the model for the overall pattern of subfunctionalization suggests that the duplication and subsequent specialization of pre-ANT allowed for the partitioning and refinement of essential ancestral function, thereby enhancing both stress resilience and developmental complexity.

Phylogenetic analysis of REV homologous genes indicates their first appearance in the moss Ceratodon purpureus, which was later than that of ANT, suggesting that they may have coevolved as regulatory partners in bryophytes (Supplementary Table S5). We identified at least one potential ANT–REV binding site in the promoter regions of all 24 representative angiosperm species. Conservation of the ANT-binding motif

within the promoters of REV first emerged in the genus Ceratodon (Fig. 5C), reflecting refined regulatory requirements for meristem three-dimensional architecture during early land plant evolution. Notably, the DNA-binding motifs and target genes of cepurANT and AtANT exhibit high similarity, indicating that the core regulatory module of the ANT-REV pathway had begun to form during the moss stage (Supplementary Table S5). Moreover, it has been reported that both ANT and REV could be expressed in the integuments and participates in the positive regulation of integument development (Elliott et al., 1996; Kelley et al., 2009), supporting the likelihood of their co-regulation. Based on these findings, we propose that the conserved ANT-REV regulatory module originated in bryophytes and was later co-opted during angiosperm evolution. This module has potentially played a fundamental role in the development of complex reproductive structures such as flowers and fruits.

The evolutionary trajectory of the ANT-REV pathway reveals a hierarchical innovative mechanism for organ development in terrestrial plants: the ancient origin of ANT (possibly tracing back to green algae) provides a molecular basis for early land adaptation, while the later emergence of REV and the gradual conservation of its binding sites signify the refinement of meristem regulatory modules. The high conservation of pathway components in the Sapindaceae family aligns with the biological characteristics of their complex organ development, suggesting a general principle of this pathway in the regulation of key agronomic traits (Fig. 6).

Supplementary data

The following supplementary data are available at *JXB* online.

Fig. S1. Phylogenetic analysis and conserved domain examination of the AP2 proteins in lychee.

Fig. S2. Conserved domain compositions of LcANT and AtANT

Table S1. Primers for DAP-seq.

Table S2. Primers for RT-qPCR.

Table S3. Primers and probes for EMSA.

Table S4. Physicochemical properties of and functional information on the lychee AP2 family proteins.

Table S5. The homologs of ANT and REV genes in 29 species.

Acknowledgements

The authors express gratitude to numerous collaborators for their contributions in collecting samples for this study.

Author contributions

ZZ: designed and coordinated the research; HH, YX, and JZ: cloned crucial genes and carried out a validation experiment; XF, QW, CC, and FW: conducted the bioinformatics analysis; HH, YH, JX, XF, QW, and YL: drafted and wrote the paper; ZZ, YH, and RX: assisted in revising the article. All authors read and approved the final manuscript.

Conflict of interest

The authors declare no conflict of interest.

Funding

This work is supported by the Key Area Research and Development Program of Guangdong Province (2022B0202070003), the National Science Foundation of China (#32072547, #32372665, and #32102320), and the Project of State Key Laboratory of Tropical Crop Breeding (SKLTCBZRJJ202502). We gratefully acknowledge the support of the Bioinformatics Facility in the College of Horticulture at SCAU.

Data availability

The datasets presented in this study are publicly available. RNA-seq data are available via the NCBI with accession numbers GSE98698 and GSE182447.

References

Abbas F, Guo S, Zhou Y, Wu J, Amanullah S, Wang HC, Shen J. 2022. Metabolome and transcriptome analysis of terpene synthase genes and their putative role in floral aroma production in Litchi chinensis. Physiologia Plantarum 174, e13796.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215, 403-410.

Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M. 2012, AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development 139, 3120-3129.

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Research 43, W39-W49.

Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. 2011. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691-1692.

Bartrina I, Jensen H, Novák O, Strnad M, Werner T, Schmülling T. 2017. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiology 173, 1783-1797.

Bollier N, Sicard A, Leblond J, et al. 2018. At-MINI ZINC FINGER2 and sI-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and tomato. The Plant Cell **30**, 83–100.

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59-60.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. TrimAL: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.

Carabelli M, Turchi L, Morelli G, Østergaard L, Ruberti I, Moubayidin L. 2021. Coordination of biradial-to-radial symmetry and tissue polarity by HD-ZIP II proteins. Nature Communications 12, 4321.

Chen C, Wu Y, Li J, et al. 2023. TBtools-II: a 'one for all, all for one' bioinformatics platform for biological big-data mining. Molecular Plant 16, 1733-1742.

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.

Dash M, Malladi A. 2012. The AINTEGUMENTA genes, MdANT1 and MdANT2, are associated with the regulation of cell production during fruit growth in apple (Malusx domestica Borkh.). BMC Plant Biology 12, 98.

Dipp-Álvarez M, Cruz-Ramírez A. 2019. A phylogenetic study of the ANT family points to a preANT gene as the ancestor of basal and euANT transcription factors in land plants. Frontiers in Plant Science 10, 17.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics **29**, 15–21.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research **32**, 1792–1797.

Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker W, Gerentes D, Perez P, Smyth DR. 1996. *AINTEGUMENTA*, an *APETALA2*-like gene of *Arabidopsis* with pleiotropic roles in ovule development and floral organ growth. The Plant Cell **8**, 155–168.

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20, 238.

Feng K, Hou X, Xing G, Liu J, Duan A, Xu Z, Li M, Zhuang J, Xiong A. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology **40**, 750–776.

Floyd SK, Bowman JL. 2007. The ancestral developmental tool kit of land plants. International Journal of Plant Sciences 168, 1–35.

Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B. 2007. PLETHORA proteins as dose-dependent master regulators of *Arabidopsis* root development. Nature **449**, 1053–1057.

Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics **27**, 1017–1018.

Guan H, Wang H, Huang J, Liu M, Chen T, Shan X, Chen H, Shen J. 2021. Genome-wide identification and expression analysis of MADS-Box family genes in litchi (*Litchi chinensis* Sonn.) and their involvement in floral sex determination. Plants **10**, 2142.

Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in *Arabidopsis*. The Plant Journal **21**, 351–360.

Horstman A, Willemsen V, Boutilier K, Heidstra R. 2014. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science **19**, 146–157.

Hu G, Feng J, Xiang X, et al. 2022. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics **54**, 73–83.

Hu Y, Xie Q, Chua N. 2003. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. The Plant Cell **15**, 1951–1961.

Huala E, Sussex IM. 1992. LEAFY interacts with floral homeotic genes to regulate *Arabidopsis* floral development. The Plant Cell **4**, 901–913.

Huang Z, Shi T, Zheng B, Yumul RE, Liu X, You C, Gao Z, Xiao L, Chen X. 2017. *APETALA 2* antagonizes the transcriptional activity of *AGAMOUS* in regulating floral stem cells in *Arabidopsis thaliana*. New Phytologist **215**, 1197–1209.

Jin J, Tian F, Yang D, Meng Y, Kong L, Luo J, Gao G. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research **45**, D1040–D1045.

Kelley DR, Skinner DJ, Gasser CS. 2009. Roles of polarity determinants in ovule development. The Plant Journal **57**, 1054–1064.

Kim S, Soltis PS, Wall K, Soltis DE. 2006. Phylogeny and domain evolution in the APETALA2-like gene family. Molecular Biology and Evolution **23**, 107–120.

Klucher KM, Chow H, Reiser L, Fischer RL. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell 8, 137–153.

Krizek BA. 1999. Ectopic expression of *AINTEGUMENTA* in *Arabidopsis* plants results in increased growth of floral organs. Developmental Genetics **25**, 224–236.

Krizek BA, Bantle AT, Heflin JM, Han H, Freese NH, Loraine AE. 2021. AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. Journal of Experimental Botany **72**, 5478–5493.

Krogan NT, Hogan K, Long JA. 2012. APETALA2 negatively regulates multiple floral organ identity genes in *Arabidopsis* by recruiting the

co-repressor TOPLESS and the histone deacetylase HDA19. Development **139**, 4180–4190.

Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW. 1989. AP2 gene determines the identity of perianth organs in flowers of *Arabidopsis thaliana*. The Plant Cell **1**, 1195–1208.

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics **9**, 559.

Langmead B. 2010. Aligning short sequencing reads with Bowtie. Current Protocols in Bioinformatics **32**, 11–17.

Lee S-J, Cho D-I, Kang J-Y, Kim SY. 2009. An ARIA-interacting AP2 domain protein is a novel component of ABA signaling. Molecules and Cells **27**, 409–416.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

Li J, Song C, Li H, Wang S, Hu L, Yin Y, Wang Z, He W... Comprehensive analysis of cucumber *RAV* family genes and functional characterization of *CsRAV1* in salt and ABA tolerance in cucumber. Frontiers in Plant Science **14**. 1115874.

Li X, Yang R, Liang Y, Gao B, Li S, Bai W, Oliver MJ, Zhang D. 2023. The *ScAPD1-like* gene from the desert moss *Syntrichia caninervis* enhances resistance to *Verticillium dahliae* via phenylpropanoid gene regulation. The Plant Journal **113**, 75–91.

Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist **199**, 639–649.

Liu W, Lin H, Yu C, Chang C, Chen H, Lin J, Lu MJ, Tu S, Shiu S, Wu S. 2020. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proceedings of the National Academy of Sciences, USA 117, 21747–21756.

Liu Z, Franks RG, Klink VP. 2000. Regulation of gynoecium marginal tissue formation by *LEUNIG* and *AINTEGUMENTA*. The Plant Cell **12**, 1879–1891.

Magnani E, Sjölander K, Hake S. 2004. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. The Plant Cell **16**, 2265–2277.

Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Research **32**, W327–W331.

Men J, Li F, Sun J, Wang G, Li H, Wang S, Xu Y, Wang J. 2021. Genome-wide identification and expression analysis of AP2/EREBP transcription factors in litchi (*Litchi chinensis* Sonn.). Tropical Plant Biology **14**, 381–395.

Meng L-S, Wang Z-B, Yao S-Q, Liu A. 2015. The *ARF2–ANT–COR15A* gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in *Arabidopsis*. Journal of Cell Science **128**, 3922–3932.

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL, Tosatto SC, Paladin L, Raj S, Richardson LJ. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49, D412–D419.

Mizukami Y, Fischer RL. 2000. Plant organ size control: *AINTEGUMENTA* regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, USA **97**, 942–947.

Nole-Wilson S, Azhakanandam S, Franks RG. 2010. Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early *Arabidopsis* gynoecium development. Developmental Biology **346**, 181–195.

Nole-Wilson S, Tranby TL, Krizek BA. 2005. *AINTEGUMENTA-*like (*AIL*) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Molecular Biology **57**, 613–628.

Okamuro JK, Szeto W, Lotys-Prass C, Jofuku KD. 1997. Photo and hormonal control of meristem identity in the *Arabidopsis* flower mutants *apetala2* and *apetala1*. The Plant Cell **9**, 37–47.

- Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE. 2001. REVOLUTA regulates meristem initiation at lateral positions. The Plant Journal 25, 223-236.
- Park CS. Go YS. Suh MC. 2016. Cuticular wax biosynthesis is positively regulated by WRINKLED 4, an AP2/ERF-type transcription factor, in Arabidopsis stems. The Plant Journal 88, 257-270.
- Pertea G, Pertea M. 2020. GFF utilities: GffRead and GffCompare. F1000Research 9:ISCB Comm J-304.
- Pertea M, Pertea GM, Antonescu CM, Chang T, Mendell JT, Salzberg **SL**. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33, 290-295.
- PfaffI MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45.
- Pineiro M, Coupland G. 1998. The control of flowering time and floral identity in Arabidopsis. Plant Physiology 117, 1-8.
- Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell 17, 61-76.
- Reeves PH, Ellis CM, Ploense SE, Wu M-F, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C. 2012. A regulatory network for coordinated flower maturation. PLoS Genetics 8, e1002506.
- Robbertse H, Fivaz J, Menzel C. 1995. A reevaluation of tree model, inflorescence morphology, and sex ratio in lychee (Litchi Chinensis Sonn.). Journal of the American Society for Horticultural Science 120, 914-920.
- Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. 2006. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development **133**, 251-261.
- Shannon S, Meeks-Wagner DR. 1993. Genetic interactions that regulate inflorescence development in Arabidopsis. The Plant Cell 5, 639-655.
- Shen W, Le S, Li Y, Hu F. 2016. SegKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11, e0163962.
- Shigyo M, Hasebe M, Ito M. 2006. Molecular evolution of the AP2 subfamilv. Gene **366**. 256-265.
- Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. 2008. Synteny and collinearity in plant genomes. Science **320**, 486–488.
- Tian H, Li Y, Wang C, et al. 2021. Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. The Plant Cell 33, 475-491.
- To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S. 2012. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. The Plant Cell 24, 5007-5023.
- Villanueva RAM, Chen ZJ. 2019. Ggplot2: elegant graphics for data analysis. Cham: Springer.

- Wang Y, Du F, Wang J, Wang K, Tian C, Qi X, Lu F, Liu X, Ye X, Jiao Y. 2022. Improving bread wheat yield through modulating an unselected AP2/ ERF gene. Nature Plants 8, 930-939.
- Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40, e49.
- Weigel D. Meverowitz EM. 1994. The ABCs of floral homeotic genes. Cell **78**. 203-209.
- Wessler SR. 2005. Homing into the origin of the AP2 DNA binding domain. Trends in Plant Science 10, 54-56.
- Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. 2019. The AP2/ ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. The Plant Cell 31, 1788-1806.
- Yamaguchi N, Jeong CW, Nole-Wilson S, Krizek BA, Wagner D. 2016. AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 induce LEAFY expression in response to auxin to promote the onset of flower formation in Arabidopsis. Plant Physiology 170, 283-293.
- Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell 22, 2156-2170.
- Zhang H, Cui X, Guo Y, Luo C, Zhang L. 2018. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Molecular Biology 98, 471-493.
- Zhang S, Tan F, Chung C, et al. 2022. The control of carpel determinacy pathway leads to sex determination in cucurbits. Science 378, 543-549.
- Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W. 2008. Model-based analysis of ChIP-seq (MACS). Genome Biology 9, R137.
- **Zhang Y, Zeng Z, Hu H, et al.** 2024. MicroRNA482/2118 is lineage-specifically involved in gibberellin signalling via the regulation of GID1 expression by targeting noncoding PHAS genes and subsequently instigated phasiRNAs. Plant Biotechnology Journal 22, 819-832.
- Zhao L, Wang K, Wang K, Zhu J, Hu Z. 2020. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): a review. Comprehensive Reviews in Food Science and Food Safety 19, 2139–2163.
- Zhao Y, Ma R, Xu D, Bi H, Xia Z, Peng H. 2019. Genome-wide identification and analysis of the AP2 transcription factor gene family in wheat (Triticum aestivum L.). Frontiers in Plant Science 10, 1286.
- Zhong H, Chen J, Li C, Chen L, Wu J, Chen J, Lu W, Li J. 2011. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Reports 30, 641-653.