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Abstract

The lychee industry is vital to agricultural economies, boosting the livelihood of farmers and regional growth. However,
instability of flowering causes yield fluctuations, severely limiting industry sustainability. Stable pistil development in
female flowers is essential for yield improvement, yet its molecular regulation remains poorly understood. Although
APETALA2 (AP2) transcription factors regulate floral organ differentiation and pistil development, their functional
role in woody perennials such as lychee is uncharacterized. In this study, two AP2 genes (LITCHIO07109 and
LITCHIO10784) were found to exhibit high and specific expression in carpels. LITCHIO07109, designated as LcANT1,
is an ortholog of Arabidopsis AINTEGUMENTA (ANT). We next systematically identified the direct downstream target
genes of LcANT1, the set of which were significantly enriched in biological processes related to floral organ develop-
ment and carpel morphology. Notably, the carpel development-related gene LITCHI024703 (LcREV) exhibited a high
level of co-expression with LcANT1. We found that the LcANT1 protein can directly bind to the promoter region of
LcREV. Further evolutionary analysis indicates that the ANT-REV regulatory module is highly conserved in angio-
sperms, especially in Sapindaceae. Our findings establish a novel theoretical framework for understanding female
flower development in lychee and offer critical gene resources and regulatory networks for molecular breeding strat-
egies aimed at developing high-yield, stable cultivars.
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Introduction

Lychee (Litchi chinensis Sonn.), a precious fruit tree originating
from Yunnan, China, holds a significant position among global
fruit crops due to its unique flavor and nutritional value (Zhao
et al., 2020; Hu et al., 2022). However, the lychee industry has
long faced significant challenges, including low overall yields
and unstable production. Notably, the ‘full blooms, half fruits’
paradox in lychee production is primarily attributed to unstable
flowering and severe physiological fruit drop during fruit de-
velopment (Abbas et al., 2022). The process of flower develop-
ment in lychee is highly complex, with female flowers, male
flowers, and functional male flowers co-existing within the
same inflorescence of the same plant. While the pistils of female
flowers eventually develop into fruits, the pistils of male flowers
degenerate completely in later stages, and those of functional
male flowers remain underdeveloped (Robbertse et al., 1995;
Guan et al., 2021). Therefore, identifying the genes that regu-
late stable pistil development in female flowers is of great the-
oretical and practical significance for improving lychee yield
and breeding new varieties with high and stable production.

The APETALA2 (AP2) gene, a member of the
APETALA2/Ethylene Response Factor (AP2/ERF) super-
family (Wessler, 2005), plays a vital role in plant growth and
development, including floral development, somatic embryo-
genesis, meristem activity, and leaf growth, while also regulat-
ing hormone signaling and stress responses (Licaust et al., 2013;
Xie et al., 2019; Wang et al., 2022). Based on the number of
AP2 domains and other DNA-binding domains, the AP2/
ERF superfamily is divided into five subfamilies: AP2;
dehydration-responsive element-binding proteins (DREB);
ethylene-responsive  element-binding  proteins  (ERFs);
Related to ABI3/VP (RAV); and Soloist (Feng et al., 2020).
Among them, the AP2 subfamily is distinguished by its two
highly similar and tandemly repeated AP2 domains. The AP2
subfamily can be further classified into three subgroups:
euAP2 (characterized by the miR172-binding motif),
euANT, and basalANT, based on differences in the amino
acid sequences of the AP2 domains and nuclear localization sig-
nals (Men et al., 2021). In contrast, other subfamilies such as
ERF and DREB contain only a single AP2 domain, with their
primary distinction lying in the differences at the 14th and 19th
amino acid residues (Men ef al., 2021). The RAV subfamily, on
the other hand, includes one AP2 domain and one B3 domain
(J. Li et al., 2023). As the smallest group within the AP2/ERF
superfamily, the Soloist subfamily exhibits significant differen-
ces in protein sequence and gene structure compared with the
other subfamilies (X. Li et al., 2023).

AP2 genes play a pivotal role in floral development in plants.
In Arabidopsis, AP2 homologs are critical for the establishment
of floral meristems, the development of floral organs, and the
regulation of flowering time. During the initial stages of floral
development, AP2 collaborates with meristem identity genes

such as APETALA1 (AP1), CAULIFLOWER (CAL), and
LEAFY (LFY) to collectively determine the identity of the flo-
ral meristem, thereby initiating floral differentiation (Huala and
Sussex, 1992; Okamuro ef al., 1997; Pineiro and Coupland,
1998). In the ABCDE model of floral organ development,
AP2 functions as an A-class gene that not only participates in
the developmental regulation of sepals but also co-regulates
petal formation with the B-class genes AP3 and
PISTILLATA (PI) (Weigel and Meyerowitz, 1994).
Additionally, it inhibits the development of stamens and carpels
by antagonizing the action of the C-class gene AGAMOUS
(AG) (Shannon and Meeks-Wagner, 1993; Krogan et al.,
2012; Huang ef al., 2017). In Arabidopsis, mutations in the
AP2 gene lead to the transformation of floral organs into repro-
ductive organs, manifested as the homeotic transformation of
sepals and petals into carpels and stamens, respectively (Kunst
et al., 1989). In the sixth stage of flower development, AG ter-
minates the activity of WUSCHEL (WUS) by acting directly
on the WUS locus or indirectly on its target gene
KNUCKLES (KNU), thereby promoting floral determinacy
and determining the number of carpels (Bollier et al., 2018).
Furthermore, the miR172—-AP2 module regulates flowering
time by inhibiting the expression of key flowering genes
SUPPRESSOR OF OVEREXPRESSION OF CO1
(SOC1) and AG (Yant et al., 2010).

AINTEGUMENTA (ANT), as a member of the AP2 sub-
family, plays a crucial role in various developmental processes
in Arabidopsis, including ovule development, floral organ for-
mation, carpel development, and the determination of floral
organ size (Krizek et al., 2021). A female-sterile mutant, ainte-
gumenta (anf), exhibits a phenotype characterized by carpel sep-
aration, impaired ovule development, a lack of integument
development, and a blockage of megasporogenesis at the tetrad
stage (Klucher et al., 1996; Krizek, 1999; Liu et al., 2000;
Mizukami and Fischer, 2000). Moreover, ANT and REV in
Arabidopsis collaborate to maintain morphogenetic balance
during the development of the carpel marginal meristem
(CMM), although the precise mechanisms remain unclear
(Nole-Wilson et al., 2010). The ant mutant in Arabidopsis
also displayed reduced floral organ and leaf size, while overex-
pression of ANT resulted in enlarged floral organs, siliques, and
leaves (Mizukami and Fischer, 2000). It was found that the
changes in the expression levels of ANT in apple are consistent
with the changes in the expression of cell cycle genes A- and
B-type CYCLIN and B-type CYCLIN-DEPENDENT
KINASE (CDKB) and MdDEL1 (Dash and Malladi, 2012).
Further it was proved that ANT participates in the auxin-
dependent regulatory process of AUXIN-REGULATED
GENE INVOLVED IN ORGAN SIZE (ARGOS) in
Arabidopsis, regulating the final size of organs through modu-
lation of cell growth, proliferation, and meristematic capacity
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(Hu et al., 2003). Through quantitative reverse transcription—
PCR (RT—-qPCR) analysis, seven AINTEGUMENTA-like
(AIL) genes were identified in Arabidopsis, among which
AIL1, AIL5, AIL6, and AIL7 are expressed in the inflores-
cence, with AIL5 showing a similar expression pattern to
ANT (Nole-Wilson ef al., 2005). This suggests that AIL genes
play regulatory roles in the development of the meristem and
are involved in the regulatory pathways of ovule and floral or-
gan development.

Despite the extensive research conducted on the role of AP2
in the development of floral organs in plants, studies focusing
on its function in perennial fruit trees such as lychee remain
largely unexplored. In this study, we successtully identified
two AP2 genes, LITCHI007109 and LITCHI010784, that
are specifically and highly expressed in the carpels of female
flowers, through weighted gene co-expression network ana-
lysis (WGCNA) of transcriptome data. Phylogenetic analysis
indicated that LITCHI007109 (LcANT1) is an ortholog of
ANT in Arabidopsis. Moreover, DNA affinity purification se-
quencing (DAP-seq) analysis further revealed that LcANT1
can directly target genes related to floral organ development
and carpel development, with LcLANT-LcREV representing
a potential conserved pathway for regulating carpel develop-
ment in lychee. These findings not only provide a solid foun-
dation for further investigation into the regulatory role of
lychee AP2 genes in the development of female flowers, but
also offer important theoretical support and candidate gene re-
sources for the molecular breeding of varieties with high and

stable yields.

Materials and methods

Identification of LcAP2 subfamily genes in lychee

To identify the AP2 gene family members in lychee, GffR ead was used to
translate the coding sequences (CDSs) of all transcripts into protein se-
quences (Pertea and Pertea, 2020). TBtools V2.069 was utilized to extract
representative transcript numbers from the genome annotation file (Chen
et al., 2023), while SeqKit was used to retrieve the corresponding tran-
script CDSs from all protein sequences (Shen et al., 2016). The protein
sequences of 17 AP2 gene family members from Arabidopsis thaliana
were downloaded from PlantTFDB (https://planttfdb.gao-lab.Org/
family.php?sp=Ath&fam=AP2) as reference sequences (Jin et al., 2017).
Subsequently, BLASTP was used to search for potential AP2 genes within
the lychee genome (Altschul et al., 1990), with results further validated by
querying the UniProtKB/Swiss-Prot database to mitigate false positives.
Then, the CDD (https://www.ncbi.nlm.nih.gov/cdd) (Marchler-Bauer
and Bryant, 2004) and Pfam (http://pfam-legacy.xfam.org/) (Mistry
et al., 2021) databases were utilized to identify the conserved structural
domains, ensuring a focus on members possessing two AP2 domains of
AP2 members in lychee.

Intron—exon organization, gene structure, protein structure, and
motif analysis of LcCAP2 genes

MUSCLE (Edgar, 2004) was utilized to perform multiple sequence align-
ment of protein sequences from 16 AP2 genes in lychee, followed by
TrimAL (Capella-Gutiérrez ef al., 2009) to eliminate poorly aligned re-
gions. IQtree2 was employed to construct a phylogenetic tree using the

maximum likelihood method with bootstrap testing, assigning a bootstrap
value of 1000. TBtools V2.069 (Chen et al., 2023) was employed to ana-
lyze the exons and introns of each LcAP2 member. Subsequently, the
NCBI Batch CD-search (https://www.ncbi.nlm.nih.gov/Structure/
bwrpsb/bwrpsb.cgi) was utilized to detect conserved structural domains.
The MEME-Suite 5.5.5 (http://meme-suite.org/meme/tools/meme)
(Bailey et al., 2015) was employed to analyze sequence motifs, thereby
elucidating the differences among LcAP2 gene family members. The
structure, conserved structural domains, and motif information of
LcAP2 genes were visualized using TBtools V2.069 (Chen et al., 2023).
The highly accurate protein structures of AtANT and LcANT domains
were obtained from the AlphaFold Protein Structure Database (https://
alphafold.ebi.ac.uk/).

Chromosomal distribution and gene duplication events of LcAP2
genes

The positional information of LeAP2 family members was retrieved from
the lychee genome annotation file. The gene duplication events were an-
alyzed using MCScanX (Wang ef al., 2012) with default parameters. The
collinear relationships among LcAP2, AtAP2, and OsAP2 gene family
members were analyzed by using MCScanX. TBtools V2.069 was used
to visualize all the results (Chen et al., 2023).

RNA-seq data analysis, weighted gene co-expression network
analysis, and Gene Ontology analysis

Two sets of transcriptome data were archived in NCBI under the acces-
sion number GSE182447 (Guan et al., 2021). Fastp (Chen et al., 2018) was
employed for quality control and the removal of adapters from the raw
RNA-seq data. Subsequently, STAR (Dobin et al., 2013) was utilized
to map the clean reads to the lychee genome, while StringTie (Pertea
et al., 2015) was applied to normalize transcript expression levels to tran-
scripts per million (TPM) values. The construction of the network and
detection of modules were performed by using WGCNA (Langfelder
and Horvath, 2008). Gene Ontology (GO) enrichment analysis was per-
formed with the ‘TopGO’ and ‘GO.db’ packages. Plots were drawn us-
ing the ‘ggplot2’ package of R (Villanueva and Chen, 2019).

DNA affinity purification sequencing and data analysis

The DAP-seq experiment was performed according to the previously
published protocol (Zhang et al., 2024). Initially, 5 ng of genomic
DNA was extracted from the young leaves of lychee and fragmented
into 200 bp segments using ultrasonication. These fragments were ligated
with Illumina-based sequencing adaptors to create a DNA library. The
CDS of LcANT1 was cloned into the pIX-Halo vector and translated
in vitro utilizing the TNT® SP6 High-Yield Wheat Germ Protein
Expression System (L3260) from Promega Corporation. Primers are listed
in Supplementary Table S1. Following the incubation of the lychee gen-
omic DNA library with HALO-tagged LcANT1, the DNA—protein
complex was eluted to be amplified with indexed primers, followed by
sequencing at Novogene (Beijing, China).

Bowtie (Langmead, 2010) was used to align the clean reads to the ly-
chee genome, while MACS (Zhang et al., 2008) was utilized to identify
the binding sites of AP2, using the BAMPE mode to discern peak values.
TBtools on Linux was utilized to extract the sequences located 50 bp up-
stream and downstream of the binding sites, and MEME-Chip (Bailey
et al., 2015) was applied to enrich the combined sequences. FIMO
(Grant et al., 2011) was used to identify binding regions that contain con-
served motifs. Genes exhibiting peaks within 2 kb upstream of the tran-
scription start site (T'SS) or downstream of the transcription termination
site (TTS) were designated as target genes of AP2.
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The logical implementation of the Python package ReCallpeaks

In response to the analytical requirements of this project, we have meticu-
lously developed the DAP-seq data analysis tool, ReCallpeaks, from the
ground up using Python. ReCallpeaks was specifically optimized for data
pertaining to transcription factors with low DNA binding capacity in
DAP-seq experiments. Initially, genome coverage files in bedgraph for-
mat were generated for each sample via the bamCoverage function of
Bamtools, based on the BAM file for each dataset (Barnett et al., 2011).
Subsequently, the coverage of genes underwent repeated processing to
obtain an average according to a designated sliding window length.
The ‘scipy.signal.find_peaks’ method was used to identify potential bind-
ing signals, thereby eliminating regions devoid of read enrichment based
on a pre-determined threshold. Upon isolating the regions with binding
signals, the samtools depth method (Li et al., 2009) was utilized to calcu-
late the sequencing depth for each base within these regions. The ‘scipy.-
signal.find_peaks’ method was then applied once more to pinpoint the
positions where the binding signal peaks manifest. Extending 50 bp on ei-
ther side of these positions delineates the candidate binding sites for tran-
scription factors. TBtools was utilized to extract the sequences of these
target regions under Linux (Chen et al., 2023). The MEME-ChIP tool
was employed to enrich the potential binding sequences for transcription
factors (Bailey et al., 2015), while FIMO was utilized to detect binding
regions containing conserved motifs (Grant et al., 2011). The source
code was hosted on GitHub (https://github.com/FanXuRong/
ReCallPeaks.git).

Phylogenetic analysis and collinear relationships analysis

Protein sequences of 26 representative angiosperm species of ANT were
downloaded from PlantTFDB (https://plantttdb.gao-lab.org/). The gen-
omic and annotation files for Sapindaceae species were downloaded from
SapBase (http://www.sapindaceae.com/Download.html) and other eu-
dicots species were collected from the NCBI database. Gffread (Pertea
and Pertea, 2020) was utilized to extract all the protein sequences, and
Diamond (Buchfink et al., 2015) was utilized to perform homology com-
parison in ultra-sensitive mode with an e-value set at 100. Orthogroup,
single-copy ortholog sequences, and species trees were inferred using
Orthofinder2 (v2.5.4) (Emms and Kelly, 2019) with parameters ‘-M
msa -S diamond’. MUSCLE was utilized to perform multiple sequence
alignment, followed by TrimAL to eliminate poorly aligned regions
(Edgar, 2004; Capella-Gutiérrez et al., 2009). Phylogenetic analysis was
conducted using IQtree2, employing the maximum likelihood method
along with bootstrap testing, with a bootstrap value of 1000.
Homologous gene pairs were identified by JCVI (v1.2.7) (Tang et al.,
2008), and the collinear relationships between species were visualized
with its graphics module. The conserved motif logos were generated
with the WebLogo (https://weblogo.threeplusone.com/).

Quantitative reverse transcription-PCR

RT—qPCR was conducted with Promega GoTaq® qPCR Master Mix
(A6001) in a BioRad CFX384 Real-Time PCR Detection System,
with each assay being replicated three times both biologically and technic-
ally. Actin was used as the reference gene according to the study published
by Zhong et al. (2011). L;cANT1 and L(REV primers were designed by
using primer3 (https://www.primer3plus.com) and are listed in
Supplementary Table S2. The specificity of the primers was tested with
melting curves and resequencing of PCR products. The relative expres-
sion was calculated using the comparative 2 ~AACE method (Pfaffl, 2001).

Electrophoretic mobility shift assay

The coding sequence of LcANT1 was cloned into the pGEX-4T-1 vector
using the primers listed in Supplementary Table S3 and then was ex-
pressed in Escherichia coli Rosseta (DE3). Expression and purification of

the recombinant protein were performed according to the manufacturer’s
instructions for the GST-tag Protein Purification Kit (Beyotime). The
electrophoretic mobility shift assay (EMSA) was conducted using the
LightShift® Chemiluminescent EMSA Kit (Thermo Fisher Scientific)
(Zhang et al., 2024). The double-stranded probes with 3’ biotin labeling
were made by annealing separately synthesized strands. The probes used
for EMSA are listed in Supplementary Table S3.

Results

LITCHIO07109 and LITCHIO10784 are expressed
specifically in the carpel of lychee female flowers

Lychee is a monoecious species that produces both male and fe-
male flowers on the same plant, including male flowers with en-
tirely degenerated pistils, female flowers with aborted stamens,
and functional male flowers exhibiting incomplete pistil develop-
ment (Fig. 1A). In male and functionally male flowers, the ovaries
are small and eventually degenerate, whereas in female flowers,
the ovaries are larger and ultimately develop into the lychee fruit.
Therefore, the stable development of female flower ovaries is one
of the key factors determining lychee yield. Thus, understanding
the molecular mechanisms of ovary development has important
theoretical significance and practical value. Although AP2 genes
are known to play essential roles in floral organ development,
their involvement in regulating ovary development in lychee re-
mains unclear.

To screen for key AP2 genes involved in the ovary develop-
ment of lychee female flowers, we identified 16 LcAP2 genes
(Supplementary Table S4) from the lychee genome using
BLASTP and Hidden Markov Model (HMM) search based
on the AP2 domain (Pfam ID: PF00847). A phylogenetic ana-
lysis of the AP2 gene family was subsequently conducted
(Fig. 1B; Supplementary S1A, B). Following the established
classification systems for AP2 genes in Arabidopsis and rice
(Kim et al., 2006; Zhao et al., 2019), the lychee AP2 genes
were classified into three analogous groups: euAP2, euANT,
and basal ANT. Subsequently, to explore the potential roles
of LeAP2 genes in flower development, we performed an
expression pattern analysis of these genes utilizing published
RNA-seq data (Guan et al., 2021). The results indicated that
among the 16 AP2 genes, LITCHI027031, LITCHI024773,
LITCHI027926, LITCHIO18533, LITCHIO06915,
LITCHI031776, and LITCHIO16016 were expressed in the
stamen and carpel of female, male, and functional male flowers,
while LITCHI002341, LITCHI024007, LITCHI017889,
and LITCHI005122 showed low or no expression in all tissues.
Notably, five AP2 genes (LITCHI016388, LITCHI007217,
LITCHI030251, LITCHIO10784, and LITCHIO07109) ex-
hibited high expression levels in female flowers. Strikingly,
LITCHIO07109 and LITCHIO10784, namely LcANT1 and
LcANT?2, displayed exclusive, tissue-specific up-regulation in
carpels (Fig. 1B), implicating their potential functional signifi-
cance in carpel development during lychee female flower
formation.
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Fig. 1. LITCHIO07109 and LITCHIO10784 exhibit expression specificity in the carpel of lychee female flowers. (A) Schematic diagram of different tissues of
lychee at full-bloom stage. (B) Expression profiles of LcAP2 at different stages of various lychee flower tissues. F, female flower; M, male flower; m, functional
male flower. LITCHIO07109 (LcANT1) showed the highest expression in the carpel of female flowers. (C) Module—trait relationship of WGCNA. Twenty-three
different modules were grouped for all expressed genes. Colors and numbers indicate the correlation coefficient between gene expression and compound
contents. Numbers in parentheses show the P-values of the significance. (D) Gene Ontology (GO) enrichment analysis for genes in the MEturquoise module
associated with carpel development. Fig.1A is sourced from https://www.sapindaceae.com.

To further uncover AP2 genes related to carpel develop-
ment in lychee flowers, we conducted WGCNA on
RNA-seq data from carpels of different lower sex types, clas-
sifying the input genes into 23 modules (Fig. 1C). Through
correlation analysis of the expression patterns of module
EngineGene with the samples, we found that six modules
(Group 1) were relatively highly expressed in the carpel of
functional male flowers, 10 modules (Group 2) were relatively
highly expressed in the carpels of male flowers, and six modules
(Group 3) were primarily highly expressed in the carpels of fe-
male flowers (Fig. 1C). Additionally, GO enrichment analysis
based on the genes in Group 3 showed that these genes were

significantly enriched in pathways such as seed development,
reproductive structure development, plant organ morphogen-
esis, floral organ orientation, and cell population proliferation
(Fig. 1D). Notably, the AP2 genes L(ANT1 and L(ANT2
were identified within the MEturquoise module, exhibiting
specific high expression in the carpel of female flowers, while
its expression was nearly undetectable in the ovary of male
and functional male flowers. Therefore, it is hypothesized
that LcANTT and LeANT2 may be involved in regulating
the carpel development of lychee female flowers. Moreover,
most of the genes in the MEturquoise module were highly ex-
pressed in female flowers, further supporting this inference.
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LITCHIOO7109 (LcANTT) is an orthologous gene of
Arabidopsis ANT

To explore the origin and function of LcANT1 and LeANT?2 in
lychee, we selected 21 angiosperm species characterized by
hierarchical evolutionary relationships, extending from the
basal angiosperm Amborella trichopoda to various species
within the Sapindaceae family (Fig. 2A). Subsequently, we
identified the orthologs of LcANTT and LcANT?2 utilizing
OrthoFinder. As depicted in Fig. 2B, the ANT homologous
gene has only one copy in basal angiosperms such as A. tricho-
poda and Nymphaea tetragona, and retains a single-copy form in
A. thaliana. However, it has stably differentiated into two cop-
ies in Rosaceae species (Fig. 2A). Among 21 angiosperms,
LANT1 (LITCHIO07109) belongs to the same orthogroup
as AtANT, which contains 65 genes (Fig. 2B), most of which
are annotated as ANT homologous genes in the NCBI data-
base, indicating that they share common ancestral genes.
Further analysis revealed that both LcANT1 and AtANT con-
tain two highly conserved DNA-binding AP2 domains
(Fig. 2C; Supplementary Fig. S2), belonging to euANT.
Additionally, the three-dimensional structure of the domains
in all LcAP2 proteins comprises an antiparallel three-stranded
B-sheet (B1, B2, and B3), accompanied by an a-helix that aligns
approximately parallel to the B-sheet (Fig. 2D).

Previous studies have elucidated that the AtANT gene plays a
crucial role in regulating carpel development in A. thaliana; single
ant-1, ant-3, ant-4, and ant-9 mutants exhibit severe defects in ov-
ule morphogenesis, including the absence of integuments and a
block in embryo sac development (Elliott ef al., 1996).
Additionally, the number of ovules produced by these mutant
plants is markedly reduced compared with that of wild-type plants
(Klucher et al., 1996). By integrating these results with the expres-
sion profile of lychee floral organs and WGCNA, we hypothe-
sized that LANT1 and LANT2 may influence the
development of female flower carpels in lychee by controlling
the expression of prospective downstream genes. Moreover,
phylogenetic analysis reveals that LcANT1 is a ortholog of
AtANT, whereas LcANT?2 is categorized as a paralog (Fig. 2B).
To better understand the regulatory network of LcANTs in lychee
carpel development, we chose LcANT1 for our next analysis due
to its closer relationship to AtANT and potentially more conserved
functions.

DAP-seq showed that LCANT1 targets multiple plant
growth and development pathways, including carpel
development

To identify the biological pathways potentially regulated by
LcANT1, we screened for genes that LcANT1 may target
within the lychee genome by using DAP-seq. Due to the rela-
tively weak binding peaks, many potential binding sites for
LcANT1 were overlooked during the initial peak calling using
the MACS2 software. To accurately identify the binding

motifs of LcANT1, we developed a Python package called
ReCallpeaks (Fig. 3A, see the Materials and methods for de-
tails). We specified a distance of 10 kb between binding sites,
set the peak height to be no less than 20 and no greater than
350, and defined that the peak value of the experimental group
must be more than twice that of the control group. These pa-
rameters were established to avoid false positives caused by re-
petitive sequences and erroneous read mappings. After
processing the data with the ReCallpeaks package, we identi-
fied 16 099 potential binding sites for LcANT1, among which
7497 were located in intergenic regions, 5494 in the exonic re-
gions of genes, 1689 in intronic regions, 734 in the upstream
2000 bp region of genes (promoter), and 685 in the down-
stream 2000 bp region (Fig. 3B).

To determine the binding motif of LcANT1, MEME-ChIP
analysis was performed on the base sequences of all binding re-
gions (extended by 50 bp on each side of the binding site), and
a highly enriched binding motif was identified (Fig. 3C). This
binding motif is similar to ZmANT1 in maize (Liu ef al., 2020)
and also resembles the AtANT-binding motif in Arabidopsis
found in JASPAR  (https://jaspar.elixir.no/). Then, we utilized
FIMO to scan all binding regions within the DAP-seq data, re-
vealing that 998 genes, along with their 2000 bp upstream and
downstream regions, contain target sites for this binding motif.
Moreover, GO enrichment analysis was conducted on 998 genes,
and it was found that these genes were enriched in reproductive
system development, regulation of flowering, flower develop-
ment, lower organ development, and carpel development path-
ways (Fig. 3D), indicating that LcANT1 may regulate the
expression of these genes and affect the ovary development of ly-
chee female flowers. In addition, by classifying these GO entries,
it was found that these genes are also involved in pathways such as
cell wall, lipid metabolism, secondary metabolism, development,
transport, and response to hormone (Fig. 3E). Most of the entries
related to development are enriched in pathways involved in
flower development, also including fruit, seed, shoot, leaf, organ,
and root development (Fig. 3E), suggesting that LcANT1 can also
participate in regulating these tissue and development processes,
which is consistent with previously reported ANT-regulated
pathways.

LcANT1 may regulate carpel development in lychee
flowers by influencing the expression of LcREV

To further identify downstream target genes of LcANT1 in the
ovary of female lychee flowers, we integrated the
DAP-seg-identified binding genes within Module 3 based on
previous WGCNA (Fig. 1C), which was specific to the carpel
of female flowers, resulting in the identification of 400 overlap-
ping genes (Fig. 4A). Next, to investigate the consequential
role of these 400 target genes, we performed a GO enrichment
analysis (Fig. 4B). Our results demonstrated that these shared
target genes play significant roles across a broad spectrum of ly-
chee flowers and reproductive development.
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Fig. 3. DAP-seq showed that LcCANT1 targets multiple plant growth and development pathways, including carpel development. (A) The flowchart of Recall
peaks. (B) Analysis of LcANT1-enriched regions in the DAP-seq assay. The pie chart shows the percentage distribution of LcANT1-binding peaks in each
category. (C) LcANT1-binding motif identified by DAP-seq analysis. (D) Gene Ontology (GO) enrichment analysis of LCANT1 downstream genes identified by
DAP-seq analysis. (E) GO category enrichment analysis of putative LcCANT1 downstream genes in each module, including the category general overview and
tissue development-related pathways. The color scale shows the enrichment score.

By integrating the results of co-expression and GO enrich-
ment analysis, we preliminarily screened 15 genes potentially
related to the development of female flower carpels in lychee

from the 400 overlapping target genes (Fig. 4C). These genes
shared the same co-expression module (MEturquoise) with
LcANTT and exhibited equivalent or reverse expression
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patterns in the carpels of different flower varieties in lychee,
suggesting that they may be regulated by LcANT1 during
the development of carpels. Based on their expression patterns,
the 15 genes were categorized into two groups: nine genes ex-
hibited an expression pattern that was consistent with LcANT,
while the remaining six genes showed the opposite pattern. All
of these genes have been reported to be involved in flower de-
velopment. For instance, AHK3, a type of cytokinin receptor,
was found to regulate plant organ size, flowering time, and
plant longevity in Arabidopsis gain-of-function mutants
(Bartrina et al., 2017). Similarly, plants lacking TPS9 consist-
ently demonstrated delayed flowering times compared with
the wild type (Tian ef al., 2021). Among these 15 genes, we

identified LcREV as a homolog of the AtREV gene, which be-
longs to the Class III HD-ZIP family. In Arabidopsis, rev mu-
tants produce flowers lacking full meristematic activity (Otsuga
et al., 2001; Prigge et al., 2005). In addition, ant rev double mu-
tants showed partial loss of the carpel marginal meristem
(Nole-Wilson et al., 2010), highlighting the critical role of
REV in carpel development. Similarly, LcREV is likely to
play an important role in lychee carpel development.
LcANT1 may regulate lychee carpel development by control-
ling the expression of LcREV. The DAP-seq results identified a
binding peak in the L(REV promoter region at —898 bp,
characterized by  the  enriched motif sequence
(GCACGCATACCGA). Next, EMSA validated that
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LcANT1 could bind to this region (Fig. 4D, E). Moreover, the
results of RT—qPCR showed that the expression trends of
LeANTT and LeREV were similar (Fig. 4F). In summary, the
above experiments indicated that LcANT1 probably influences
lychee carpel development by regulating the expression of
LREV.

The evolutionary conservation of ANT-REV in land plants

To investigate possible evolutionary conservation of the ANT—
REV pathway in plants, we selected 29 representative species
spanning key evolutionary nodes (including two mosses, liver-
wort, two gymnosperms, and 24 angiosperms, 10 of which be-
long to the Sapindaceae family) for orthologous gene analysis of
ANT and REV. This result indicated that ANT homologs are
present in the green alga Micromonas commoda, whereas REV
homologs first appear in the moss Ceratodon purpureus. The
above findings suggested that the ANT gene originated signifi-
cantly earlier than the REV gene, and the REV pathway prob-
ably formed a stable genetic module starting from bryophytes
(Fig. 5A, B).

In order to further explore the molecular basis of the inter-
action between ANT and REV, this study further analyzed
the conservation of the regulatory elements within the RE1
promoter region in 24 species of angiosperms. Using the high-
affinity binding motif (GCACGCATACCGAC) as a refer-
ence, the fuzznuc tool (allowing for four-base mismatches)
was employed to search for potential binding sites in the pro-
moter regions (2000 bp upstream of ATG) of the REV hom-
ologous genes in each of the 24 species. The results showed
that the promoter regions of all species contained at least one
potential binding site. After conducting multiple sequence
alignment and motif analysis of the potential binding sites, it
was found that starting from the genus Ceratodon, the inter-
action motif between ANT and REV exhibited a high degree
of conservation of the sequence (GCACGCATACCGAC).
Especially within the Sapindaceae (excluding the 1 bp
difference in Aesculus and Nephelium), the binding motif
showed nearly complete sequence conservation (Fig. 5C;
Supplementary Table S5). This result aligns with the known
characteristic that the AP2 domains of the AtANT protein co-
operatively bind to DNA fragments containing such conserved
motifs, which serve as potential ANT-binding sites. These
findings collectively indicate profound evolutionary conserva-
tion of the ANT-REV interaction mechanism in vascular
plants.

Discussion

The ANT-REV regulatory module potentially regulates
floral organogenesis in lychee

As a core member of the AP2 subfamily within the AP2/ERF
transcription factor family, the ANT gene in Arabidopsis

exhibits a dual regulatory role in floral organ morphogenesis:
it maintains the activity of the marginal meristem to influence
carpel development and acts as a primary regulatory switch to
coordinate cell proliferation and differentiation during organ
growth. This study identified two direct ANT homologous
genes (LcANTT and LcANT2) in the lychee genome (Fig. 2).
These genes encode AP2/ERF proteins with two AP2 do-
mains, each of 60-70 amino acids (Fig. 2; Supplementary
Table S4). Furthermore, phylogenetic analysis reveals that
they belong to the ANT evolutionary branch (Fig. 2). To re-
veal the potential mechanisms by which ANT regulates the de-
velopment of lychee carpels, we selected LcANT1 for
DAP-seq analysis based on its closer relatedness to AtANT1,
which led to the identification of 15 potential target genes
(Fig. 4). Based on their expression profiles, the target genes
were divided into two categories: Class I genes that are
co-expressed with LLANTT in female flower carpels (such as
LREV/LITCHI024703, LHAT3/LITCHI025382, and
LARF2/LITCHIO04564) and Class II genes that exhibit a
negative correlation with LcANTT expression (such as
LeNAC2/LITCHIO11271, LeARF16/LITCHIO18590, and
LeSVP/LITCHIO07230). Among the Class I genes, their
Arabidopsis homolog AtREV influences gynoecia morphology
partly by regulating auxin homeostasis (Nole-Wilson ef al.,
2010), AtHAT3 determines gynoecium symmetry through
spatiotemporal regulation of auxin distribution (Carabelli
etal., 2021), and AtARF2 promotes self-pollination by limiting
gynoecium growth to maintain its proper position relative to
the stamens, suggesting that these genes may mediate the posi-
tive regulatory function of LcANT1 (Schruft et al., 20006). In
contrast, the Arabidopsis homologs of Class II genes, such as
AtNAC?2, inhibit the expression of the flowering promoter
FT by up-regulating FLC (Zhang et al., 2018), AtARF16 plays
a promoting role in stamen development (Reeves ef al., 2012),
and AtSVP, as a temperature-sensitive flowering inhibitor, can
antagonize FT function (Hartmann ef al., 2000), suggesting that
LcANT1 may maintain gynoecium development advantage by
inhibiting such genes.

It is worth noting that LITCHI024703 (LcREV), the homo-
log of AtREV, is a Class III HD-ZIP gene that has been re-
ported to play a role in the development of the carpel
marginal meristem in Arabidopsis. ANT and REV function
in parallel and have overlapping roles, but the interaction be-
tween ANT and REV genes is still unclear (Nole-Wilson
et al., 2010). This study demonstrated through EMSA experi-
ments that LcANT1 can directly bind to the L(REV promoter,
suggesting a potential role in the regulation of LcRET expres-
sion (Fig. 4). Interestingly, the DNA-binding site sequence of
LcANT1 within the promoter of LcREV is highly conserved
(Fig. 5). Furthermore, the exclusive expression of this ANT—
REV module in lychee female flower carpels mirrors the
female-specific expression and function of the CRC gene in
melon carpel determinacy and male organ suppression
(Zhanget al., 2022). This conserved expression pattern strongly
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indicates an analogous mechanism in lychee: promoting carpel
formation/maintenance in female flowers, while its suppres-
sion in male flowers facilitates carpel degeneration and stamin-
ate development. Therefore, the ANT-REV pathway
probably plays a central role in orchestrating floral organogen-
esis and contributing significantly to sex determination mech-
anisms in lychee (Fig. 0).

Evolutionary conservation of the ANT-REV regulatory
module in land plants

Our phylogenetic analysis of ANT transcription factors across
29 representative species (including green algae, mosses, liver-
worts, and angiosperms) reveals their pivotal role in plant ter-
restrial evolution (Fig. 2). The presence of an ANT homolog
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in the green alga M. commoda indicates an ancient origin within
the plant lineage (Supplementary Table S5). Supporting this,
the moss Physcomitrella patens encodes four enANT genes,
which function as molecular switches for diverse stem cell types
and are auxin induced, mirroring the regulation of Arabidopsis
AIL proteins (Aoyama ef al., 2012; Horstman ef al., 2014).

ANT homologs encode two AP2 domains, essential for
DNA binding and function. Intriguingly, some researchers hy-
pothesized that horizontal transfer of a bacterial HNH-AP2
endonuclease (bearing an AP2 domain) into plants may have
initiated the origin of the AP2/ERF family (Magnani et al.,
2004). Duplication of the AP2 domain preceded the diver-
gence of the two major AP2-like lineages: euAP2 and ANT
(Kim et al., 2006). The ANT clade itself subsequently diversi-
fied into basal ANT and euANT subgroups. In Arabidopsis, the
euANT subgroup includes eight members such as ANT,
AINTEGUMENTA-LIKE 1 (AIL1), BABY BOOM (BBM),
and PLETHORA (PLT) genes, while the basalANT subgroup
includes genes such as WRINKLED1 (WRI1), WRI3, WRIA4,
and ADAP (Dipp-Alvarez and Cruz-Ramirez, 2019).

Our findings, integrated with existing evidence, underscore
the pivotal evolutionary role of the ANT clade in facilitating
plant terrestrialization. The conservation of this clade within
the proposed ancestral toolkit for land plant life (Kim et al.,
2006; Shigyo et al., 2006; Floyd and Bowman, 2007) and the
lineage-specific absence of euANT and basal ANT homologs
in algae strongly support the hypothesis that the tandem dupli-
cation of pre-ANT and its subsequent divergence into distinct
basal ANT and euANT subgroups within the embryophyte an-
cestor constituted a  critical molecular adaptation
(Dipp-Alvarez and Cruz-Ramirez, 2019). We propose that
this divergence was instrumental in enabling plants to colonize

terrestrial habitats. This is mechanistically plausible given the
crucial functions of the ANT clade: their involvement in des-
iccation tolerance directly addressed a paramount challenge of
the aerial environment, while their roles in establishing, main-
taining, and elaborating complex multicellular structures pro-
vided the necessary anatomical innovations absent or
rudimentary in aquatic ancestors. The observed trend of func-
tional specialization between the basalANT and euANT sub-
groups in Arabidopsis exemplifies this evolutionary role:
members of the basal ANT subgroup primarily regulate funda-
mental stress adaptation and metabolic processes such as
drought response and fatty acid metabolism (Lee ef al., 2009;
To et al., 2012; Park et al., 2016), while euANT members
are chiefly responsible for governing intricate developmental
programs, such as meristem maintenance and organogenesis
(Galinha et al., 2007; Yamaguchi et al., 2016; Dipp—Alvarez
and Cruz-Ramirez, 2019). It is important to note that some
functional overlap exists; for instance, the euANT protein
AtANT itself contributes to abscisic acid signaling and drought
tolerance in seeds (Meng et al., 2015). Nonetheless, the model
for the overall pattern of subfunctionalization suggests that the
duplication and subsequent specialization of pre-ANT allowed
for the partitioning and refinement of essential ancestral func-
tion, thereby enhancing both stress resilience and developmen-
tal complexity.

Phylogenetic analysis of RET homologous genes indicates
their first appearance in the moss Ceratodon purpureus, which
was later than that of ANT, suggesting that they may have co-
evolved as regulatory partners in bryophytes (Supplementary
Table S5). We identified at least one potential ANT-REV
binding site in the promoter regions of all 24 representative
angiosperm species. Conservation of the ANT-binding motif
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within the promoters of REV first emerged in the genus
Ceratodon (Fig. 5C), reflecting refined regulatory requirements
for meristem three-dimensional architecture during early land
plant evolution. Notably, the DNA-binding motifs and target
genes of cepurANT and AtANT exhibit high similarity, indi-
cating that the core regulatory module of the ANT-REV path-
way had begun to form during the moss stage (Supplementary
Table S5). Moreover, it has been reported that both ANT and
REV could be expressed in the integuments and participates in
the positive regulation of integument development (Elliott
et al., 1996; Kelley et al., 2009), supporting the likelihood of
their co-regulation. Based on these findings, we propose that
the conserved ANT-REV regulatory module originated in
bryophytes and was later co-opted during angiosperm evolu-
tion. This module has potentially played a fundamental role
in the development of complex reproductive structures such
as flowers and fruits.

The evolutionary trajectory of the ANT-REV pathway re-
veals a hierarchical innovative mechanism for organ develop-
ment in terrestrial plants: the ancient origin of ANT (possibly
tracing back to green algae) provides a molecular basis for early
land adaptation, while the later emergence of REV and the
gradual conservation of its binding sites signify the refinement
of meristem regulatory modules. The high conservation of
pathway components in the Sapindaceae family aligns with
the biological characteristics of their complex organ develop-
ment, suggesting a general principle of this pathway in the
regulation of key agronomic traits (Fig. 6).
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