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26 

ABSTRACT 27 

In plants, 22-nucleotide (nt) small RNAs (sRNAs) trigger the production of secondary small 28 

interfering RNAs (siRNAs) and enhance silencing. DICER-LIKE 2 (DCL2)-dependent 22-nt 29 

siRNAs are rare in Arabidopsis thaliana and thought to function mainly during viral infection; 30 

by contrast, these siRNAs are abundant in many crops such as soybean (Glycine max) and maize 31 

(Zea mays). Here, we studied soybean 22-nt siRNAs by applying CRISPR-Cas9 to 32 

simultaneously knock out the two copies of soybean DCL2, GmDCL2a and GmDCL2b, in the 33 

Tianlong1 cultivar. sRNA sequencing revealed that most 22-nt siRNAs are derived from long 34 
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inverted repeats (LIRs) and disappeared in the Gmdcl2a/2b double mutant. De novo assembly of 35 

a Tianlong1 reference genome and transcriptome profiling identified an intronic LIR formed by 36 

the chalcone synthase (CHS) genes CHS1 and CHS3. This LIR is the source of primary 22-nt 37 

siRNAs that target other CHS genes and trigger the production of secondary 21-nt siRNAs. 38 

Disruption of this process in Gmdcl2a/2b mutants substantially increased CHS mRNA levels in 39 

the seed coat, thus changing the coat color from yellow to brown. Our results demonstrated that 40 

endogenous LIR-derived transcripts in soybean are predominately processed by GmDCL2 into 41 

22-nt siRNAs, and uncovered a role for DCL2 in regulating natural traits. 42 

 43 

INTRODUCTION 44 

In plants, microRNAs (miRNAs) and small interfering RNAs (siRNAs) trigger cleavage of their 45 

complementary mRNA targets via the slicer activity of ARGONAUTE (AGO) proteins (Rogers 46 

and Chen, 2013; Song et al., 2019). In Arabidopsis thaliana, while the majority of the sliced 47 

mRNA targets are degraded after miRNA-mediated cleavage, a small subset of the cleaved 48 

targets generate secondary, trans-acting siRNAs (ta-siRNAs) which enhance the silencing 49 

cascade (Allen et al., 2005; Chen et al., 2007; Howell et al., 2007). Two major models account 50 

for the initiation of the production of ta-siRNAs: the “two-hit” model for TAS3 locus, which 51 

requires the function of miR390 and AGO7 (Axtell et al., 2006; Xia et al., 2017), and the 52 

“one-hit” model, which requires s miRNA trigger to be precisely 22-nucleotide (nt) in length 53 

(Chen et al., 2010; Cuperus et al., 2010). The TAS2 loci in Arabidopsis mostly generate 54 

secondary 21-nt siRNAs triggered by miR173, but the 22-nt tasiR2140 from TAS2 3’ D6(-) 55 

processed by DCL4 triggers tertiary siRNAs, although its functional significance is still unclear 56 

(Chen et al., 2010). 57 

 58 



 

3 

The 22-nt miRNAs can be generated by DCL1 directly processing precursors containing an 59 

asymmetric bulge (Manavella et al., 2012), or by nucleotidyltransferase-mediated 3’ terminal 60 

extension of one nucleotide on certain 21-nt miRNAs (Zhai et al., 2013; Fei et al., 2018). In 61 

addition, 22-nt noncanonical miRNAs can be produced by SlDCL2 in tomato (Solanum 62 

lycopersicum); these miRNAs in turn target SlDCL2 mRNAs, forming a feedback loop (Wang et 63 

al., 2018b). In Medicago truncatula, soybean, tomato (Solanum lycopersicum) and many other 64 

plant species, 22-nt miRNAs act as master regulators via the production of phased, secondary 65 

siRNAs (Fei et al., 2013) to target gene families with hundreds of members, such as the gene 66 

families encoding pentatricopeptide repeat proteins, nucleotide binding-leucine rich repeat 67 

proteins, and MYB transcription factors (Zhai et al., 2011; Li et al., 2012; Shivaprasad et al., 68 

2012; Xia et al., 2013; Arikit et al., 2014). Moreover, the 22-nt miR2118 family can target 69 

thousands of non-coding transcripts in reproductive tissues of monocots (Johnson et al., 2009; 70 

Song et al., 2012; Zhai et al., 2015). 71 

 72 

Compared to miRNAs, 22-nt siRNAs in plants are primarily produced by DCL2 and play 73 

essential roles in viral defense and transgene silencing (Gasciolli et al., 2005; Ding and Voinnet, 74 

2007; Parent et al., 2015; Taochy et al., 2017; Wu et al., 2017; Wang et al., 2018b). Recent 75 

reports also found that 22-nt siRNAs derived from endogenous genes can be induced by nutrient 76 

deficiency and may contribute to plant adaptation to environmental stresses (Wu et al., 2020). 77 

However, the function of endogenous 22-nt siRNAs under normal growth condition is still 78 

largely unexplored, partially because they are rare in wild-type Arabidopsis, and loss-of-function 79 

dcl2 mutants in Arabidopsis and tomato have no visible developmental defects (Henderson et al., 80 

2006; Wang et al., 2018a; Wang et al., 2018b). Loss-of-function of DCL4 in Arabidopsis can 81 
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induce the production of a large amount of DCL2-dependent 22-nt siRNAs from endogenous 82 

genes and cause silencing of their targets, and as a result, plants exhibit various developmental 83 

defects (Bouché et al., 2006; Zhang et al., 2015; Wu et al., 2017; Wu et al., 2020). However, 84 

endogenous 22-nt siRNAs are abundant in many major crops such as soybean, rice, and maize, 85 

indicating their potential importance (Lunardon et al., 2020). For example, 22-nt siRNAs from 86 

transposable element (TE) regions are abundant in maize, especially in the mediator of 87 

paramutation1-1 (mop1-1) background in which 24-nt siRNAs disappear (Nobuta et al., 2008). 88 

Yet, their functions remain unclear partly due to a lack of mutants that disrupt the production of 89 

22-nt siRNAs in major crops. Here, we take advantage of the completed soybean reference 90 

genome (Schmutz et al., 2010; Liu et al., 2020) and recent advances in crop genome editing 91 

technologies (Shan et al., 2013), to directly investigate the function of DCL2-dependent 22-nt 92 

siRNAs in soybean by studying Gmdcl2 CRISPR-Cas9 lines with frame-shift mutations. 93 

 94 

RESULTS 95 

CRISPR-Cas9 editing of DCL2a/2b in Glycine max 96 

To gain insight into the role of 22-nt endogenous siRNAs in Glycine max, we applied the 97 

CRISPR-Cas9 technology in soybean cultivar Tianlong1 to obtain loss-of-function mutants of 98 

the GmDCL2 genes. The soybean genome encodes two copies of DCL2, GmDCL2a 99 

(Glyma.09G025300) and GmDCL2b (Glyma.09G025400); these have high similarity (80.4%) in 100 

the encoded protein sequence (Supplemental Figure 1A, 1B). These two genes are adjacent to 101 

each other on Chromosome 9, indicating they are derived from a recent tandem duplication and 102 

thus have a high likelihood of being functionally redundant. Taking advantage of their high 103 

sequence similarity, we designed a single gRNA to simultaneously target a conserved coding 104 
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region on both genes (Figure 1A), and we carried out CRISPR-Cas9 mediated editing through 105 

tissue culture (see Methods for detail).  106 

From multiple independent mutant lines, we selected three homozygous double-mutant lines, 107 

Gmdcl2a/2b-8, Gmdcl2a/2b-9, and Gmdcl2a/2b-16, for further studies (Figure 1A). All three 108 

lines harbor deletions around the target site that result in a frameshift and premature stop codon 109 

in the coding region of GmDCL2a/2b (Figure 1A). The mutant lines showed no obvious 110 

abnormality in plant architecture except for being slightly dwarf (Supplemental Figure 1C). The 111 

most dramatic phenotypic change is that the seed coat of all three lines was brown in contrast to the 112 

yellow seed coat of wild-type Tianlong1 (Figure 1B). In our later work, this phenotype was of 113 

particular interest for studying the function of DCL2. 114 

 115 

Impacts of DCL2 loss-of-function on sRNA biogenesis in soybean 116 

To study the impacts of GmDCL2a/2b loss-of-function on sRNA biogenesis and gene regulation, 117 

we performed sRNA sequencing (sRNA-seq) and mRNA sequencing (mRNA-seq) in both wild 118 

type (Tianlong1) and the Gmdcl2a/2b-8 mutant. Both the leaf and seed coat tissues were examined 119 

with three biological replicates for each sample. The sRNA-seq results showed that wild-type 120 

soybean produced abundant 22-nt siRNAs, which decreased substantially in the Gmdcl2a/2b 121 

mutant (Figure 2A).  122 

 123 

To further analyze these DCL2-dependent siRNAs, we classified sRNA clusters based on the 124 

dominant size class in each cluster using ShortStack (Axtell, 2013; Lunardon et al., 2020). 125 

Consistent with previous analysis of sRNAs in soybean (Arikit et al., 2014; Lunardon et al., 2020), 126 
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the majority of siRNA loci in soybean features 24-nt siRNAs, but 21- and 22-nt loci demonstrated 127 

higher sRNA abundances (Figure 2B). In wild-type libraries, our analysis identified 1,304 22-nt 128 

siRNA loci from the seed coat and 1,371 from leaf sample, which accounted for only ~3% of the 129 

total number of loci but over 20% of total siRNA abundance (Figure 2B). Compared to the wild 130 

type, siRNAs from 22-nt siRNA loci decreased substantially in the Gmdcl2a/2b mutant (Figure 131 

2B, 2C). For example, over 70% of the 22-nt siRNA loci showed at least a ten-fold decrease in 132 

abundance in the seed coat (Figure 2D). Also, siRNAs from some 21-nt siRNA loci, especially 133 

those that share sequence homology with 22-nt siRNA loci, were decreased in the mutant (Figure 134 

2E), suggesting DCL2-dependent 22-nt sRNAs are capable of targeting in trans and triggering the 135 

biogenesis of secondary 21-nt siRNAs. These results indicated that, compared to the low level of 136 

22-nt siRNAs found in Arabidopsis, soybean accumulates a large amount of endogenous 22-nt 137 

siRNAs whose biogenesis requires DCL2. 138 

 139 

We noticed that a handful of 22-nt siRNA loci remained abundant in the Gmdcl2a/2b mutant 140 

(Supplemental Table 1), and a further investigation found that these loci exhibited miRNA-like 141 

characteristics. For example, one locus contains two homologous Gypsy transposable elements 142 

(TEs) in the fifth intron of a clathrin gene (Glyma.14G058300); an RNA from this locus is 143 

predicted to form a stem-loop like structure with bulges and mismatches that resembles a miRNA 144 

precursor (Figure 2F). This locus produces three highly abundant sRNAs in wild-type (namely 145 

sRNA-A, sRNA-B, and sRNA-C in Figure 2F). While sRNA-B and sRNA-C nearly disappeared 146 

in the Gmdcl2a/2b mutant, the 22-nt sRNA-A was surprisingly even more abundant in the 147 

Gmdcl2a/2b mutant (Figure 2F), suggesting that this stem-loop can be processed not only by 148 

DCL2, but also by other DCL proteins, most likely by DCL1. This finding indicates that 149 
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DCL2-dependent 22-nt siRNAs have the potential to evolve into DCL1-dependent 22-nt 150 

miRNAs, thus shedding light on a potential path for the evolution of 22-nt miRNA via DCL2. 151 

 152 

A large number of transposable elements are targeted by DCL2-dependent 22-nt siRNAs in 153 

soybean 154 

In addition to their relatively large number, 22-nt siRNA loci in soybean have another unusual 155 

feature compared to Arabidopsis: that is, ~70% of these 22-nt siRNA loci are overlapping with 156 

transposable elements (TEs) (Figure 3A, Supplemental Figure 2A), suggesting a potential role in 157 

TE silencing. In particular, instead of a typical 24-nt length, the siRNAs from the Caulimovirus 158 

class of TEs are mainly 22-nt; we found that other TE families, such as CMC-EnSpm, also 159 

produced a large amount of 22-nt siRNAs (Figure 3B, Supplemental Figure 2B). These 160 

TE-derived 22-nt siRNAs are mostly strand-specific, and their abundances sharply decreased in 161 

the Gmdcl2a/2b mutant, as exemplified by one Caulimovirus TE locus and one CMC-EnSpm 162 

locus (Figure 3B, 3C, Supplemental Figure 2B, 2C). In addition to 22-nt loci, we also identified 163 

dozens of highly abundant 21-nt loci that are TE-related, and their sRNA accumulation also 164 

decreased in the Gmdcl2a/2b mutant (Figure 3D, Supplemental Figure 2D), such as one 165 

CMC-EnSpm locus that is homologous with other 22-nt siRNA generating CMC-EnSpm family 166 

of TEs (Figure 3C, Supplemental Figure 2C). These findings are consistent with the hypothesis 167 

that 22-nt TE-derived siRNAs may target the homologous TE transcripts and trigger the 168 

generation of secondary 21-nt siRNAs to enhance their silencing. In the Gmdcl2a/2b mutant, 169 

however, we did not observe an elevated level of TE mRNA accumulation (Figure 3D, 170 

Supplemental Figure 2E, with examples shown in Figure 3C and Supplemental Figure 2C), 171 

suggesting there are other redundant mechanisms to suppress TE activities in soybean. 172 
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 173 

DNA of TE regions in plant genomes is often highly methylated in CG and non-CG contexts (Law 174 

and Jacobsen, 2010). We tested whether these TE-derived DCL2-dependent 22-nt siRNAs are 175 

capable of triggering DNA methylation like the well-established role of 24-nt siRNAs in 176 

RNA-directed DNA methylation by methylome profiling of the leaf tissues. From our 177 

whole-genome bisulfite sequencing (WGBS) data, we found that the methylation level at these 178 

22-nt TE loci is similar between wild-type and the Gmdcl2a/2b mutant (Supplemental Figure 3C). 179 

Thus, we conclude that 22-nt siRNAs are not required for the maintenance of DNA methylation at 180 

their targeted TEs in leaves. 181 

 182 

GmDCL2 favors long inverted repeats (LIRs) as its substrates 183 

Next, knowing that RNA secondary structure is a key feature of at least DCL1 processing, we 184 

examined the structural features of 22-nt siRNA loci. We found that inverted repeats (IRs) are 185 

enriched at a much higher proportion at 22-nt loci, compared to 21- or 24-nt loci. For example, ~80% 186 

of 22-nt siRNA loci with a sRNA accumulation level higher than 50 TPM (transcripts per million) 187 

overlapped with IRs, compared to only 12% of 21-nt siRNA loci with similar abundances 188 

overlapping with IRs (Figure 4A). Our polyA-selected mRNA-seq data further showed that, for 189 

those IRs that are overlapping with 22-nt siRNA loci and have relatively high sRNA accumulation 190 

levels (above 10 TPM), 90% of them are transcribed by Pol II (Figure 4B). In contrast, IRs 191 

overlapping with 24-nt siRNA loci have almost no detectable polyA signal (Figure 4B), as most 192 

24-nt siRNAs are derived from Pol IV transcripts that do not have a polyA tail (Kuo et al., 2017). 193 

We also found that a smaller number of IRs mainly produced 21-nt siRNAs and are also 194 

transcribed by Pol II (Figure 4A, 4B).  195 
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 196 

A previous study showed that DCL4 prefers double-stranded RNA (dsRNA) substrates that are 197 

over 100 nt in length (Nagano et al., 2013). In addition, in a number of monocot species, 24-nt 198 

reproductive phasiRNAs are derived from many IR precursors (Kakrana et al., 2018). However, 199 

the substrate preference for DCL2 remains unknown. Our analysis found that the median length of 200 

22-nt siRNA-generating IRs is much larger than that of 21-nt siRNA-generating IRs, especially for 201 

loci with high sRNA abundance. For those loci with TPM higher than 50, the median lengths of 202 

21- and 22-nt siRNA-generating IRs were 254 nt and 1289 nt, respectively (Figure 4C). For 203 

example, the eighth intron of gene Glyma.15G177500 contained a long IR consisting of Copia TEs. 204 

The repeat region of this IR was about 2800 nt and produced a large number of 22-nt siRNAs from 205 

only the sense strand in a DCL2-dependent manner (Figure 4D). In contrast, the pre-mRNAs of 206 

gene Glyma.14G055600 contained a short IR whose repeat region is 240 nt and produced a series 207 

of 21-nt sense siRNAs that were unaffected by Gmdcl2a/2b mutation (Figure 4D). These results 208 

suggested that long IRs transcribed by Pol-II are preferentially processed by DCL2 in soybean. In 209 

contrast, shorter IRs (typically 300 nt and shorter) are favored by DCL4 to produce 21-nt siRNAs. 210 

 211 

DCL2-dependent 22-nt siRNAs regulate the seed coat color in soybean 212 

CHS is a key enzyme for the biosynthesis of flavonoids, which cause black/brown pigmentation 213 

in the soybean seed coat (Tuteja et al., 2009). Wild soybean accessions have black or brown seed 214 

coats, whereas commercial soybean cultivars are yellow due to the presence of a dominant allele 215 

of the I locus. There are four genotypes of the I locus (I, i
i
, i

k
, and i, with that order of 216 

dominance). Seeds of the dominant I allele have no pigment either on the hilum or on seed coat 217 

proper; the i
i
 allele exhibits pigment on the hilum but not on the seed coat proper; the i

k
 allele 218 
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shows two-colored saddle pattern on seed coat; and the recessive i alleles feature fully pigmented 219 

seed coat (Tuteja et al., 2004; Cho et al., 2019). The i
i
 allele contains two similar inverted repeat 220 

clusters, and each cluster contains three CHS genes (CHS1, CHS3, and CHS4) (Tuteja et al., 221 

2004; Tuteja et al., 2009) (as illustrated in Figure 5A). This locus is the source of siRNAs which 222 

target and silence other CHS genes in the genome in trans, and result in a yellow seed coat 223 

(Tuteja et al., 2004; Tuteja et al., 2009). Large deletions, some of which arise by homologous 224 

recombination within the CHS clusters, lead to missing CHS genes in the clusters and thereby 225 

can abolish the production of the CHS-derived siRNAs and reverse the seed coat color back to 226 

black/brown (Tuteja et al., 2009; Cho et al., 2019). However, the genome sequencing of black 227 

wild soybeans W05 showed that it also contains this large CHS cluster, suggesting the cluster 228 

itself is not sufficient to trigger siRNA-mediated silencing (Xie et al., 2019; Liu et al., 2020).  229 

 230 

Comparative genome analysis found that a complex inversion and gene duplication event 231 

adjacent to CHS gene clusters occurs in most cultivars, such as Wm82 and ZH13, and results in 232 

the promoter as well as the first four exons/introns of a subtilisin gene inserted to the upstream of 233 

the CHS gene cluster (Shen et al., 2018; Xie et al., 2019; Liu et al., 2020) (as shown in Figure 234 

5A). This leads to a model proposing that the CHS1 antisense transcripts driven by the promoter 235 

of the subtilisin gene can base pair with other CHS1 sense transcripts to form dsRNAs that are 236 

further processed into 21-nt siRNAs to silence other CHS genes (Xie et al., 2019). Recent studies 237 

found that AGO5 is involved in this process as a naturally occurring ago5 mutant in soybean has 238 

altered color in the saddle region of the seed coat (Cho et al., 2017). DCL2 has not been 239 

implicated in this regulatory machinery as the majority of CHS siRNAs are 21-mers (Tuteja et al., 240 
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2009). Yet, we inferred that DCL2 is required to maintain the silencing of the CHS gene family 241 

as Gmdcl2a/2b mutation alters the seed coat color of Tianlong1 (Figure 1B). 242 

243 

To understand the role of DCL2 in regulating seed coat color, we de novo assembled the I locus 244 

in Tianlong1 (i
i
 allele, yellow seed coat with light brown hilum) using a combination of PacBio245 

long-read sequencing, Illumina sequencing, and chromosome conformation capture sequencing 246 

(Hi-C) (see Methods for details). We found that the I locus in Tianlong1 has the same inversion 247 

and duplication of the subtilisin gene fragment as previously shown in other cultivars (Figure 248 

5A). We hypothesize that the transcription potentially driven by the promoter of this subtilisin 249 

gene traverses the antisense strand of CHS1 and the sense strand of CHS3 in Tianlong1 (Figure 250 

5A). This chimeric transcript has been previously discovered in ESTs (expressed sequence tags) 251 

in the Williams 82 cultivar (Clough et al., 2004), and confirmed here by a large number of 252 

splicing junction mRNA-seq reads spanning the entire antisense-CHS1-sense-CHS3 inverted 253 

repeat region, connecting the last exon of the inserted subtilisin gene fragment and the exon 254 

located downstream of this IR. The antisense CHS1 region and the sense CHS3 region in the 255 

subtilisin-antisense-CHS1-sense-CHS3 chimeric transcripts can form a long inverted repeat (LIR) 256 

because of the close sequence similarity between CHS1 and CHS3. Consistent with our finding 257 

that GmDCL2 favors LIRs as its substrates, we detected a series of siRNAs from the antisense 258 

CHS1 region and sense CHS3 region that are mainly 22 nt (Figure 5A, 5B) in wild-type and 259 

disappeared in the Gmdcl2a/2b mutant (Figure 5A, 5C). 260 

261 

Besides CHS1 and CHS3, we also detected a large number of secondary siRNAs from other CHS 262 

genes, such as CHS2, CHS7, and CHS8 (Figure 5B). These siRNAs are mainly 21-nt in length 263 



 

12 

and generated from both the sense and antisense strands (Figure 5B), indicating the possible 264 

involvement of an RNA-dependent RNA polymerase (RDR) in generating the dsRNA precursors. 265 

Interestingly, these 21-nt siRNAs also disappeared in the Gmdcl2a/dcl2b mutant (Figure 5C), 266 

suggesting that they are likely secondary siRNAs triggered by DCL2-dependent 22-nt CHS 267 

siRNAs (Figure 5D). This is consistent with a previous study that investigated sRNA profiles at 268 

ten different stages of seed coat development, and found that the 22-nt CHS siRNAs are more 269 

prevalent than the 21-nt siRNAs at the very early stages of seed coat development, including 4 to 270 

24 days after flowering, whereas 21-nt CHS siRNAs become dominant at the later stages of seed 271 

coat development. The transition from 22-nt siRNAs at CHS1/3 (I locus) to predominantly 21-nt 272 

secondary siRNAs at CHS7/8 likely occurs at the 5-6 mg stages (Cho et al., 2013). In the 273 

Gmdcl2a/dcl2b mutant, the mRNA of CHS2, CHS7, and CSH8 genes accumulate at much higher 274 

levels compared to the wild-type (Figure 5C), and the seed coat color changed from yellow to 275 

brown (Figure 1B). Our results demonstrated that the DCL2-dependent 22-nt siRNAs are 276 

required to maintain the silencing of the CHS gene family and regulate the color of seed coat in 277 

soybean (Figure 5D). In addition, by comparing mRNA-seq data of WT and Gmdcl2a/2ab 278 

mutant, we identified 381 genes differentially accumulated in leaf (Supplemental Data Set 1), 279 

and 1912 in seed coat (including multiple CHS family members) (Supplemental Data Set 2), 280 

suggesting GmDCL2-dependent 22-nt siRNAs can regulate expression of genes besides the CHS 281 

family. 282 

 283 

DISCUSSION 284 

While our results showed that DCL2 can act on the transcripts containing long CHS inverted 285 

repeats from the I locus (i
i
 allele in Tianlong1 cultivar), one needs to be extra cautious about the 286 
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simple hypothesis that transcription originating at the partial subtilisin fragment is the main or 287 

only driver for the production of the CHS dsRNAs at the I locus given its complicated structure. 288 

In addition, several lines of evidence suggest a more complicated situation for the regulation of 289 

the production of the CHS dsRNAs as well as the CHS siRNAs - a) according to the recent 290 

soybean pan-genome analysis, 7 out of the 24 modern cultivars have a Haplotype 2 of CHS 291 

arrangement that do not have the partial subtilisin fragment at I locus, yet still have yellow seed 292 

coat (Liu et al., 2020); b) although the wild species W05 lacks the partial subtilisin promoter 293 

fragment and has a black seed coat, it is unclear whether the potential mutations of other 294 

modifying factors, such as DCL2, AGO5, or other genes involved in the silencing pathway, result 295 

in the inability to produce CHS siRNAs in W05 (Cho et al., 2017); c) the rearranged subtilisin 296 

promoter hypothesis cannot explain the two-color pattern observed in the i
i
 and i

k
 alleles, as both 297 

silencing (yellow) and non-silencing (pigmented) regions should have the same genomic 298 

structure (Cho et al., 2017). Thus, future systemic studies using naturally occurring spontaneous 299 

mutations or transgenic lines that have closely related genetic backgrounds are best for 300 

investigating the mechanism of such a complex locus in diverse wild and cultivated soybeans. 301 

 302 

The precursor of 22-nt siRNAs in soybean resembles the precursor of microRNAs in many ways: 303 

a single-stranded RNA transcribed by Pol II, forms a hairpin-like structure, and does not require 304 

the activity of RDR. Such types of IR precursors for siRNAs have also been observed for 24-nt 305 

reproductive phasiRNAs in some monocot species, including asparagus (Asparagus officinalis), 306 

lily (Lilium maculatum), and daylily (Hemerocallis lilioasphodelus) (Kakrana et al., 2018). 307 

Moreover, 22-nt siRNAs in soybean can also trigger the production of secondary 21-nt siRNAs, 308 

consistent with recent reports in Arabidopsis on the role of 22-nt siRNAs in amplifying silencing 309 
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signals (Wu et al., 2017; Wu et al., 2020). The parallels in the structure of precursor and the 310 

mode of function between the 22-nt miRNA and LIR-derived 22-nt siRNA imply a potential 311 

mechanism for the direct evolutionary descent of 22-nt miRNAs from 22-nt siRNAs. Our 312 

findings also support the previously proposed model that miRNA precursors can originate from 313 

local duplication that forms an inverted repeat structure (Allen et al., 2004; Cuperus et al., 2011). 314 

Therefore, the large number of LIR loci that generate 22-nt siRNAs in soybean could provide a 315 

rich foundation for miRNA origin. 316 

 317 

While wild-type Arabidopsis generates few 22-nt siRNAs, we found that a large number of 22-nt 318 

siRNAs are produced mostly from LIR regions in soybean. These 22-mers are capable of 319 

triggering the production of secondary 21-nt siRNAs to further silence TEs or protein-coding 320 

genes. A recent study of sRNAs from 47 diverse plant species showed that many major crops 321 

and vegetables produce 22-nt siRNAs at much higher levels compared to Arabidopsis (Lunardon 322 

et al., 2020). Our results here demonstrated that DCL2-dependent 22-nt siRNAs are capable of 323 

regulating natural traits, and future investigation in more species could help to expand our 324 

understanding about the possibly underappreciated function of 22-nt siRNAs in wild-type plants.  325 

 326 

METHODS 327 

Plant materials and growth conditions 328 

For preparation of Glycine max leaf samples, the wild type Tianlong1 and 329 

CRISPR/Cas9-engineered mutant lines were grown under short-day conditions (10 h 300 μmol m
-2

 330 

s
-1

 white light/14 h dark, 26 °C) in the greenhouse and the leaves of 10-day-old seedlings were 331 
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collected at ZT8 (8 hours after light exposure). For preparation of seed coat samples, the soybean 332 

plants were grown under long-day conditions (16 h 300 μmol m
-2

 s
-1

 white light/8 h dark, 26 °C), 333 

and the seed coats were dissected from the fresh seeds with a weight of 50 to 75 mg (Tuteja et al., 334 

2009) at ZT11 (11 hours after light exposure). The RNA and DNA used in mRNA-seq, sRNA-seq 335 

and WGBS were isolated from tissues of wild-type (Tianlong1) and the Gmdcl2a/2b-8 mutant. 336 

The seeds can be obtained by contacting the group of Dr. Bin Liu at the Chinese Agricultural 337 

Academy of Sciences. 338 

 339 

Targeted mutagenesis of GmDCL2 Genes 340 

The gRNAs targeting GmDCL2 genes were designed by the CRISPR-P online tool 341 

(http://cbi.hzau.edu.cn/crispr/) (Lei et al., 2014). The GmU6 promoter was amplified with a pair of 342 

primers GmU6-F and GmU6-R, and the gRNA scaffold was amplified with a pair of primers 343 

gRNA-F and Scaffold-R, using the plasmid pU3-gRNA as a template. The GmU6:gRNA cassette 344 

was constructed by overlapping PCR with the GmU6-F and Scaffold-R primers and then inserted 345 

into the 35S-Cas9-Bar vector between the XbaⅠ and Bgl II sites by the infusion technology 346 

(Clontech). The constructed GmDCL2-gRNA binary vector was introduced into the 347 

Agrobacterium tumefaciens strain EHA105 and transformed into WT soybean Tianlong1 (Paz et 348 

al., 2006). The T0 transgenic plants were regenerated on the medium under the selection of 8 mg/L 349 

Glufosinate Ammonium. For characterizing the targeted mutations, the genomic sequences of 350 

GmDCL2a and GmDCL2b were amplified and sequenced using the primer pairs 351 

GmDCL2a-SF/SR and GmDCL2b-SF/SR, respectively. Primers are listed in Supplemental Table 352 

2. 353 

 354 

http://cbi.hzau.edu.cn/crispr/
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Bi-allelic (both alleles are mutated but have different mutations), heterozygous (one allele is 355 

mutated, one is wild type), and chimeric (wild type allele, and multiple different mutated alleles) 356 

mutations frequently occur in the soybean CRISPR/Cas9 transgenic lines. The T0 transgenic line 357 

#8 (brown seed coat) are bi-allelic in both GmDCL2a and GmDCL2b loci, based on the 358 

genotyping of 23 T1 transgenic lines (all have brown seed coat) - ten lines were homozygous but 359 

in two kinds of genotypes (6 lines : 4 lines), 13 are still bi-allelic. Both of the T0 transgenic line 360 

#9 and line #16 (yellow seed coat) are complex chimeric lines. We genotyped the offspring of 361 

transgenic plants to identify homozygous double mutants and only selected one mutant obtained 362 

from each line for further analysis, and we named them Gmdcl2a/2b-8, Gmdcl2a/2b-9, and 363 

Gmdcl2a/2b-16, respectively. 364 

 365 

RNA extraction and sequencing of mRNAs and sRNAs 366 

The RNA samples of the wild-type (Tianlong1) and the Gmdcl2a/2b-8 mutant were prepared by 367 

Spectrum Plant Total RNA Kit (Sigma, STRN50) according to the manufacturer’s instructions. 368 

The strand-specific mRNA and sRNA libraries were prepared and sequenced at the 369 

BGI-Shenzhen. 370 

 371 

Whole-genome bisulfite sequencing (WGBS) and analysis 372 

Extraction of genomic DNA and the construction of whole-genome bisulfite sequencing libraries 373 

were performed by BGI-Shenzhen. After sequencing, the mapping of reads and the calculation of 374 

DNA methylation ratios in single-base levels were performed using BSMAP (v2.90) (Xi and Li, 375 

2009) with default parameters. 376 
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 377 

Bioinformatics analysis of sRNAs 378 

The adapters of raw reads were removed using cutadapt (v2.9) (Martin, 2011) and the trimmed 379 

reads of 20-30 nt in size were mapped to the Tianlong1 genome using bowtie (v1.2.2) (Langmead 380 

et al., 2009) with the parameters: -v 0 -a -S. After filtering out the reads matching to rRNAs, 381 

tRNAs as well as to the mitochondrial and chloroplast genome (allowing two mismatches), the 382 

clean reads of each library were individually mapped to Tianlong1 genome by ShortStack (v3.8.5) 383 

(Axtell, 2013) using the parameters: -mismatches 0 --ranmax 5 –mincov 2rpm. And the result files 384 

were used to identify siRNA and miRNA loci as previously reported (Lunardon et al., 2020). The 385 

predicted RNA secondary structure of miRNA-like locus was visualized using strucVis (Michael J. 386 

Axtell at https://github.com/MikeAxtell/strucVis). For CHS siRNA analysis, the siRNAs mapped 387 

to a specific CHS gene, but not to other CHS genes, were defined as siRNAs derived from this CHS 388 

gene. 389 

 390 

Bioinformatics analysis of mRNA-seq 391 

The pair-end reads of mRNA-seq were mapped to the Tianlong1 genome using STAR (v2.7.2a) 392 

(Dobin et al., 2013) with the parameters: --outFilterMultimapScoreRange 0 --outSAMattributes 393 

Standard --alignIntronMin 20 --alignIntronMax 12000. The PCR duplication reads were removed 394 

by Picard (v2.18.22-SNAPSHOT). The uniquely mapped read count of genes, TEs, and IRs were 395 

extracted by featureCounts (v2.0.0) (Liao et al., 2014) with parameters -O -p. Due to the 396 

duplication of CHS genes, the read specifically mapped to a specific CHS gene, but not to other 397 

CHS genes were defined as read derived from this CHS gene. The FPKM (fragments per kilobase 398 
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of exon model per million mapped reads) values were calculated based on read count by edgeR 399 

packages (v3.22.5) (Robinson et al., 2010). 400 

401 

De novo assembly of the Tianlong1 genome 402 

Genomic DNA was isolated and sequenced by BGI-Shenzhen. The 20kb library was sequenced 403 

on PacBio Sequel II System with 80X coverage. The 270-bp and 500-bp pair-end Illumina 404 

libraries were constructed by BGI and sequenced using HiSeq X Ten platform with 100X 405 

coverage. 0.5g leaves of 40-day-old plants were collected and used for in situ Hi-C library 406 

construction, following the procedure previously described with some modification (Moissiard et 407 

al., 2012). In brief, the homogenized tissues were fixed in 1% (vol/vol) formaldehyde and stopped 408 

with 0.125 M glycine. Then homogenate was filtered through two layers of miracloth. After 409 

centrifugation, the nuclei were digested and ligated in situ as previously described. After 410 

reverse-crosslink and DNA purification, the DNA fragmentation was performed by Tn5 using the 411 

Vazyme kit (TruePrep DNA Library Prep Kit V2 for Illumina, TD501) and stopped with 0.2% 412 

SDS at 55℃ for 15min. Biotinylated DNA fragments were pulled down and amplified. The Hi-C 413 

library was sequenced on HiSeq X Ten platform using 150-bp paired-end mode.  414 

415 

De novo assembly was conducted according to a reported pipeline (Shen et al., 2018) with minor 416 

modifications. In brief, the PacBio reads were assembled to primary contigs using Canu (v1.7.1) 417 

(Koren et al., 2017). The primary contigs were polished using SMRT Link (v6.0.0), and were 418 

corrected by whole genome re-sequencing data using Pilon(v1.23) (Walker et al., 2014). The 419 
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contigs had an N50 up to 4.34 Mb and were further assembled into chromosome with Hi-C data 420 

using 3D DNA (Dudchenko et al., 2017) and Juicebox Assembly Tools (Durand et al., 2016). 421 

422 

IR and TE identification of Tianlong1 genome 423 

Inverted repeat (IR) identification was performed by running einverted (EMBOSS toolkit, v6.6.0) 424 

with parameter -threshold 150 -match 3 -mismatch -4 -gap 12 -maxrepeat 8500. And TEs were 425 

identified using RepeatMasker (A.F.A. Smit, R. Hubley & P. Green at http://repeatmasker.org) 426 

with the parameter "-nolow -no_is" and Glycine max specific library of repeat sequences.  427 

428 

Accession numbers 429 

The genome assembly and annotation of Tianlong1 (v1.0) are available at NCBI with the 430 

accession number PRJNA645754. The sRNA-seq, mRNA-seq, and WGBS data generated in this 431 

study were deposited at NCBI under the accession number PRJNA644259 432 

(https://dataview.ncbi.nlm.nih.gov/object/PRJNA644259?reviewer=4dqf4e0s98tsr4i017osb8784433 

9), and also hosted at http://ipf.sustech.edu.cn/priv/Tianlong1_public with Tianlong1 as reference. 434 

The sRNA data mapped to the Wm82 genome is also available at the MPSS plant sRNA website: 435 

https://mpss.danforthcenter.org/dbs/index.php?SITE=soy_sRNA_dcl2. 436 

437 

Supplemental Data 438 

Supplemental Figure 1. The phylogenetic analysis of DCL proteins and the growth phenotype of 439 

the Gmdcl2a/2b mutants. 440 

http://ipf.sustech.edu.cn/priv/Tianlong1_public
https://mpss.danforthcenter.org/dbs/index.php?SITE=soy_sRNA_dcl2
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Supplemental Figure 2. TE-derived 22-nt siRNAs in leaf. 441 

Supplemental Table 1. The list of 22-nt siRNA loci with 22-nt siRNA TPM more than 5 and not 442 

decreased in Gmdcl2a/dcl2b mutant. 443 

Supplemental Table 2. Primer sequences. 444 

Supplemental Data Set 1. The list of genes showing differential mRNA expression between wild 445 

type and Gmdcl2a/dcl2b-8 mutant in seed coat. 446 

Supplemental Data Set 2. The list of genes showing differential mRNA expression between wild 447 

type and Gmdcl2a/dcl2b-8 mutant in leaf. 448 

Supplemental File 1. Multiple sequence alignment fasta file for Supplemental Figure 1A. 449 

Supplemental File 2. Newick tree file for Supplemental Figure 1A. 450 

Supplemental File 3. The unprocessed images for Figure 1B and Supplemental Figure 1C. 451 
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467 

FIGURE LEGENDS 468 

Figure 1. CRISPR/Cas9-engineered mutations in GmDCL2a/2b result in a brown seed coat. 469 

(A) Deletion mutations at target sites in the Gmdcl2a/2b mutants. The gRNA target and PAM470 

sequences are highlighted with bold in black and blue, respectively. The gene structures of 471 

GmDCL2a and GmDCL2b are shown above. The coding sequence (CDS) is shown as dark box, 472 

the untranslated region (UTR) is shown as grey box, and the intron region is shown as a line. 473 

(B) Seed coat color phenotype of the Gmdcl2a/2b mutants. The scale bar represents 1 cm.474 

475 

Figure 2 The accumulation levels of 22-nt siRNAs are sharply decreased in the Gmdcl2a/2b 476 

mutant. 477 

(A) The length distribution of siRNAs in wild type (WT) and the Gmdcl2a/2b mutant. TPM:478 

transcripts per million. 479 

(B) Proportions of total locus count and siRNA accumulation of different kinds of loci. The480 

numbers above each column represent the number of siRNA loci identified in different samples. 481 
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(C) The length distribution of sRNAs from loci predominantly generating 21-nt, 22-nt or 24-nt 482 

siRNAs.  483 

(D) The comparison of sRNA accumulation levels of 22-nt siRNA loci in seed coat between wild 484 

type and the Gmdcl2a/2b mutant. The arrow and circle mark a miRNA-like locus shown in (F). 485 

The dash lines indicate a sRNA fold change of 10. 486 

(E) The comparison of sRNA accumulation levels of 21-nt siRNA loci in seed coat between wild 487 

type and the Gmdcl2a/2b mutant. The dash lines indicate a sRNA fold change of 10. 488 

(F) A miRNA-like locus. The potential miRNA/miRNA* pairs and their expression levels in wild 489 

type and the Gmdcl2a/2b (dcl2) mutant were shown in the left panel. The depth of uniquely 490 

mapped mRNA reads and the accumulation levels of uniquely mapped sRNA reads in seed coat 491 

were shown in the right panel. 492 

 493 

Figure 3 TE-derived 22-nt siRNAs in seed coat. 494 

(A) TE enrichment analysis of 21-nt, 22-nt and 24-nt siRNA loci. 495 

(B) Length distribution of sRNAs derived from different TE families. TPM: transcripts per 496 

million. 497 

(C) Examples of 22-nt TE siRNA loci (siRNA loci overlapping with TE) and 21-nt TE siRNA 498 

loci. Only uniquely mapped RNA and sRNA reads are shown. 499 

(D) Log2 fold change of sRNA and mRNA accumulation levels of TE siRNA loci in the 500 

Gmdcl2a/2b mutant compared with WT. The locus numbers (N) are indicated. 501 

 502 
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Figure 4 Inverted repeats derived 22-nt siRNAs. 503 

(A) The IR enrichment analysis of 21-nt, 22-nt and 24-nt siRNA loci in seed coat samples.504 

(B-C) The RNA expression levels (FPKMs, fragments per kilobase of exon model per million 505 

mapped reads) (B) and repeat length (C) of the repeat region of IRs overlapped with 21-nt, 22-nt 506 

and 24-nt siRNA loci in seed coat samples. TPM: transcripts per million. 507 

(D) The examples of 22-nt siRNA loci and 21-nt siRNA loci in seed coat samples. Only uniquely508 

mapped mRNA and sRNA reads were shown. 509 

510 

Figure 5. 22-nt siRNAs suppress the expression of CHS genes which control the color of seed 511 

coat. 512 

(A) The gene structures of I locus in wild soybean W05 genome as well as cultivated soybean513 

ZH13 and Tianlong1 genome. The mRNA-seq and sRNA-seq results of Tianlong1 seed coat were 514 

showed below the gene structures. *: Due to the duplication of CHS1 and CHS3 gene, the read 515 

specifically mapped to CHS1 or CHS3, but not to other CHS genes were also shown in “Uniquely 516 

mapped” panel. The junction read counts (n) are indicated. TPM: transcripts per million. 517 

(B) The length distribution of CHS siRNAs in wild type.518 

(C) The sRNA and mRNA accumulation levels of CHS genes in the Gmdcl2a/dcl2b mutant and519 

wild type. FPKM: fragments per kilobase of exon model per million mapped reads. 520 

(D) A model of DCL2-dependent 22-nt siRNAs regulating the expression levels of CHS genes.521 

522 
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Figure 1. CRISPR/Cas9-engineered mutations in GmDCL2a/2b result in a brown seed coat.
(A) Deletion mutations at target sites in the Gmdcl2a/2b mutants. The gRNA target and PAM sequences
are highlighted with bold in black and blue, respectively. The gene structures of GmDCL2a and GmDCL2b
are shown above. The coding sequence (CDS) is shown as dark box, the untranslated region (UTR) is
shown as grey box, and the intron region is shown as line.
(B) Seed coat color phenotype of the Gmdcl2a/2b mutants. The scale bar represents 1 cm.
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Figure 2 The accumulation levels of 22-nt siRNAs are sharply decreased in the Gmdcl2a/2b mutant.
(A) The length distribution of siRNAs in wild type (WT) and the Gmdcl2a/2b mutant. TPM: transcripts per million.
(B) Proportions of total locus count and siRNA accumulation of different kinds of loci. The numbers above each column
represent the number of siRNA loci identified in different samples.
(C) The length distribution of sRNAs from loci predominantly generating 21-nt, 22-nt or 24-nt siRNAs.
(D) The comparison of sRNA accumulation levels of 22-nt siRNA loci in seed coat between wild type and the Gmdcl2a/2b
mutant. The arrow and circle mark a miRNA-like locus shown in (F). The dash lines indicate a sRNA fold change of 10.
(E) The comparison of sRNA accumulation levels of 21-nt siRNA loci in seed coat between wild type and the Gmdcl2a/2b
mutant. The dash lines indicate a sRNA fold change of 10.
(F) A miRNA-like locus. The potential miRNA/miRNA* pairs and their expression levels in wild type and the Gmdcl2a/2b (dcl2)
mutant were shown in the left panel. The depth of uniquely mapped mRNA reads and the accumulation levels of uniquely
mapped sRNA reads in seed coat are shown in the right panel.
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