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Abstract 

Fruits, the reproductive organs in flowering plants, are an important source of 

food for humans. Complete fruit development and ripening featuring by a remarkable 

phenotypic plasticity are orchestrated by versatile genetic factors. microRNAs and 

phasiRNAs play central roles in regulating diverse biological processes via 

transcriptionally or post-transcriptionally modulating the expression of target genes. 

Apart from the their conserved function in model plants, microRNA/phasiRNA-

mediated regulation has been widely investigated in fruit crops, with many novel 

molecular mechanisms. Here, we survey the regulatory mechanisms and biological 

functions of microRNAs and phasiRNAs in fruit development, with a particular focus 

on their roles in fruit quality formation. We also discuss their potential application in 

improving fruit quality. 

Introduction 

Fruits, the edible part of plants, are rich in carbohydrates, inorganic salts, 

vitamins, and other nutrients. They are an increasing part of the human diet [1,2]. 

Botanically, a fruit is a ripened ovary or carpel containing seeds. Besides yield, other 

horticultural traits, such as nutrient content, texture, flavor, aroma and color, also 

affect the market value of fruits [1]. The formation of these valuable horticulturaltraits 

is based on fruit development and the underlying molecular regulatory mechanisms 

[3]. To harvest a high yield of quality fruit, researchers have investigated fruit 

development, quality formation, and fruit maintenance for several decades. Studies 

have thus far involved cultivation improvement, post-harvest techniques, and basic 

research on biochemistry, genetics, and molecular biology. Among these researches, 

small RNAs, especially microRNA (miRNA) and phased secondary small interfering 

RNA (phasiRNA), play a significant role in modulating the biological processes 

implicated in fruit development and quality formation [4].  
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Plant miRNAs are a class of short regulatory RNAs with 20-22 nucleotides [5,6]. 

After the MIR genes are transcribed by RNA Polymerase II (Pol II) and processed by 

DICER-LIKE1 (DCL1), mature miRNAs are incorporated into ARGONAUTE1 

(AGO1) to form an RNA-induced silencing complex (RISC), which directs the 

silencing of target genes [6]. When the RISC was loaded with 22-nucleotides (nt) 

mature miRNAs, it triggers the biogenesis of phasiRNA from its target transcripts [7]. 

These phasiRNAs negatively regulate target transcripts during plant development as 

miRNA does [7]. Over the past two decades, miRNAs and phasiRNAs have been well 

studied. As negative regulators, they play crucial roles in many aspects of plant 

development.  

In this review, we summarized the latest information regarding miRNA and 

phasiRNA mediated regulatory networks involved in fruit development in model 

plants, as well as horticultural crops, with the majority of new information concerning 

their roles in fruit quality formation.  

miRNA and fruit development 

Generally, fruit development occurs in three stages: fruit set, fruit growth and 

fruit ripening and senescence. These developmental stages and the underlying 

regulatory networks contribute to fruit production and quality formation. Here, we 

summarized the major fruit development related miRNAs in Table 1. 

miRNAs involved in fruit set 

Fruit set is the process in which a flower becomes a fruit and potential fruit 

number and size is determined. As a conserved and well-studied miRNA, 

miR156/157 are involved in almost all stages of fruit development (Figure 1) [8-

13,14**,15*, 16-18]. The miR156-SQUAMOSA PROMOTER BINDING PROTEIN-

LIKE (SPL) gene pathway maintains the meristematic state of tomato ovary tissues, 

thereby coordinating the initial steps of fleshy fruit development and determinacy [9]. 
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Other conserved miRNA pathways, such as miR159-GAMYB1/2 and miR166-HB15A, 

also are involved in ovary development [19, 20]. miR160, which targets the AUXIN 

RESPONSE FACTORS (ARFs), regulates longan embryo development, which is 

critical for fruit set [21]. miR397 regulates the number of seeds and lignin 

biosynthesis of Arabidopsis via targeting LACCASES (LACs) [22]. miR393 regulates 

two TOLL/INTERLEUKIN-1 RECEPTOR-LIKE (TIR1-like) genes CsTIR1 and 

CsAFB2, which are essential for seed germination and the parthenocarpic fruit of 

cucumber during fruit set [23] (Figure 1 and Table 1).  

miRNAs involved in fruit growth 

Fruit growth is the process of fruit enlargement, which affects fruit morphology 

and size. During fruit growth, the miR156-SPL2 regulatory module adjusts the 

elongation of siliques in Arabidopsis [18]. miR160 targets ARFs and affects fruit 

morphology and placental thinning in tomatoes [24], while miR166-REV were 

involved in tomato fruit shape formation [25]. miR397-targeted LACs regulate the 

fruit cell lignification in pears during fruit growth [26**]. Regulatory modules 

mediated by other conserved miRNAs, such as miR159-MYBs [27], miR172-AP2 

[28,29**,30], miR164-NACs [12,27,31**], miR396-GRFs [32], are related to fruit 

growth (Figure 1 and Table 1). 

miRNAs involved in fruit ripening and senescence 

Diverse biological processes occurs during fruit ripening and senescence, such as 

flavor formation, coloration, browning and so on. At the ripening stage of a tomato, 

miR157 targets COLOURLESS NON-RIPENING (CNR), an SPL gene critical for 

ripening, impacting fruit softening after the red ripe stage [11]. Conserved miRNAs, 

such as miR159-MYBs [33], miR172-AP2 [28,29**,30], and miR164-NACs 

[12,27,31**] are also related to fruit ripening or senescence (Figure 1). In the banana, 

decreasing miR528 results in upregulated expression of POLYPHENOL OXIDASE 
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(PPO) genes encoding polyphenol oxidase, leading to ROS surge and subsequent 

browning of the banana fruit in cold conditions [34**] (Table 1). Specifically, 

miR396g may regulate the target genes associated with glycosylation and in 

solubilization of tannin precursors during the persimmon ripening [16] (Table 1). 

Non-conserved miRNA pathways, such as miR1917-CARBON DIOXIDE TRANSFER 

RATE 4 (CTR4) [35], miR2991-ANTIDIURETIC HORMONES (ADHs) [16], and 

miR7125-COMPLEX CHROMOSOME REARRANGEMENTS (CCRs) [36**], play 

specific roles in different biological processes during fruit ripening (Table 1).   

Interestingly, some miRNA pathways work in the same biological process during 

fruit ripening and senescence. For instance, both the miR156-SPLs [13-16] and 

miR828/858-MYBs [16,17,37-41] module are involved in fruit coloration. miR164, 

miR156, miR319, miR6478 [12], miR528 [34**] and miR159 [42] are associated 

with fruit browning in apples, bananas, and strawberry (Table 1).  

miRNA and fruit quality formation 

As mentioned above, miRNAs are involved in many aspects of fruit 

development, contributing to fruit quality formation. Here, we particularly focused on 

miRNAs that affect fruit (1) size and shape, (2) flavor, (3) coloration, and (4) texture.  

miRNAs involved in fruit size and shape 

Arabidopsis fruit constitutes an ovary containing three primary tissue types: the 

valve, the replum and the valve margin [28]. AtAPETALA2 (AP2), a transcription 

repressor, suppresses the expression of downstream genes that identify the valve 

margin and replum and inhibits the growth of the valve margin [28]. miR172c targets 

AtAP2 and affects the fruit size of Arabidopsis. The valve growth is blocked in 

Arabidopsis plants with decreased miR172 activity via overexpressing target mimicry 

or expressing a miR172-resistant AP2, resulting in smaller fruit [28]. Although the 

accumulation of miR172 enhances fruit size in Arabidopsis [28], the miR172-AP2 
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module shows the opposite function in apples. The fruit growth of an apple is 

negatively regulated by the overexpression of miR172, leading to a dramatic 

reduction in fruit size (Figure 2) [29**]. This is mainly because the fruits of different 

plants develop from different tissues. Unlike Arabidopsis and tomato fruits, both of 

which are derived from ovaries [43], apple fruits are mostly derived from the 

hypanthium that is hypothesized to consist of the fused bases of the sepals, petals, and 

stamens, while the inferior ovary becomes the core of the fruit. Interestingly, in 

tomatoes, the carpel-only flowers developed into parthenocarpic fruits owing to the 

overexpression of the MIR172 gene [43]. These studies illustrate that the effect of 

specific miRNA modules on fruit growth might be specific to fruit type and plant 

species. In the tomato, research has revealed novel roles of miR396 in regulating 

sepals and fruit size by targeting SlGRFs and provided a novel, potential way to 

improve tomato fruit yield [32].  

miRNAs also help to form fruit shape. In the tomato, overexpression of a 

miR166-resistant SlREVOLUTA (SlREV) gives rise to ectopic fruit formation on 

receptacles and most of the secondary fruits are irregularly spaced without placenta 

and ovules (Figure 2) [25]. A transgenic tomato with ectopic expression of miR160-

insensitive ARF10 results in cone-shaped fruit, with a sharper angle at the distal fruit 

edge and a higher ratio of proximal/distal diameters in transgenic fruits (Figure 2) 

[44]. Simultaneously, reduction of miR160 substantially increases expression of 

miR160-targeted ARF10A/10B/17, which causes elongated, pear-shaped fruit [24]. 

Modifying the miRNA expression pattern of scion can alter the fruit shape of 

Cucurbita pepo cultivars via intra-species grafting [27]. miR159, miR164 and 

miR171 play a negative role in the regulation of fruit shape, resulting in smaller C. 

pepo heterograft fruit [27]. 

miRNAs involved in fruit flavor  

Besides fruit size and shape, other traits, such as flavor and color, contribute to a 

fruit’s market value. Fruit flavor is a combination of taste and aroma, which is 
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increased by the accumulation of primary metabolites (such as sugars and acids) and 

secondary metabolites (such as flavonoids and phenolics) [45,46]. 

In the woodland strawberry, overexpression of miR399 increases phosphate 

uptake [47,48], which facilitates the fructose, glucose, and soluble solid content in 

ripening fruit [48]. Three novel miRNAs (Novel_miR65, Novel_miR75 and 

Novel_miR92) target the gene encoding galacturonosyltransferase involved in ‘sugar 

metabolism’ in the hot pepper [49]. In persimmon, miR395p-3p and miR858b 

regulate bHLH and MYB respectively, which synergistically regulate the structural 

genes responsible for tannin biosynthesis [16]. In persimmon fruit ripening, miR156j-

5p-SPL regulates the stabilization of the MYB-bHLH-WD40 complex, decreasing 

PROANTHOCYANIDINS (PAs, or called tannin) production [16].  

miRNAs involved in fruit coloration 

Fruit coloration during ripening can be achieved by chlorophyll breakdown and 

the accumulation of pigments such as anthocyanins [14**]. miR828/miR858-MYBs 

[37-41] and miR156/157-SPLs [13,14**,15*,50**] are conserved pathway to regulate 

coloration in various fruit crops.  

miR828, with a length of 22-nt, targets MYB or TAS4 and triggers the biogenesis 

of phasiRNAs that in trans or in cis regulate multiple MYBs while miR858 directly 

regulates the expression of MYBs. These MYBs belong to the R2R3 class, which is 

integrated with multiple biological processes, particularly in plant anthocyanin 

biosynthesis [51]. This sophisticated regulatory network might provide the accurate 

regulation in anthocyanin biosynthesis in different plants. This pathway has been 

reported to regulate the coloration of various fruit including litchi [15*], sea 

buckthorn [17], grapes [38], tomatoes [39], and kiwifruit [40].  

In addition, the miR156-SPL module negatively regulates anthocyanin 

biosynthesis in Arabidopsis by destabilizing the MYB-bHLH-WD40 transcriptional 

activation complex [13]. This regulatory mechanism has also been observed in fruits. 
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For instance, the miR156a-SPL12 module manipulates the accumulation of 

chlorophylls and anthocyanins during fruit ripening in the blueberry, in which 

VcSPL12 interacted with VcMYBPA1 (Figure2) [14**]. Similarly, in pear, miR156-

targeted SPLs interfere with the MYB-bHLH-WD40 complex in anthocyanin 

biosynthesis [52]. In litchi, miR156a-targeted LcSPL1, interacting with LcMYB1, are 

vital in anthocyanin biosynthesis [15*].  

In addition to the abovementioned two conserved pathways, other miRNAs are 

also involved in fruit coloration. In the blueberry, miR396 and a novel miRNA 

(miR_n10) target chloroplast FILAMENTATION TEMPERATURE-SENSITIVE 

PROTEIN Z (FtsZs) and chloroplastic BCL-2-ASSOCIATED ATHANOGENE 1 

(BAG1), respectively, therefore modulating coloration [53] (Figure2). In the litchi, a 

novel microRNA (NEW41) involved in fruit coloration is differentially expressed, 

and may function in anthocyanin biosynthesis by targeting CHALCONE ISOMERASE 

(LcCHI) [15*]. Recently, a novel mechanism suggests that the MdMYB16/MdMYB1-

miR7125-MdCCR module regulates the homeostasis between lignin and anthocyanin 

biosynthesis in the coloration of apple fruit during light induction (Figure 2) [36**]. 

Some research has shown that long non-coding RNA (lncRNA) could regulate 

miRNAs as endogenous target mimics (eTMs) and participate in anthocyanin 

accumulation. In the apple, MLNC3.2 and MLNC4.6 (two lncRNAs), function as 

eTMs by blocking the miR156 mediated cleavage of SPL (Figure 2) [50**]. In the sea 

buckthorn, two lncRNAs (LNC1 and LNC2) act as the eTMs of miR156a and 

miR828a respectively. Silencing LNC1 and LNC2 leads to increased and decreased 

anthocyanin content in the berries [17]. 

miRNAs involved in fruit texture 

Texture is another chief fruit quality that consumers consider [54]. An interesting 

study shows that Pbr-miR397a, inhibits the expression of the laccase gene 

(PbrLAC1/2/18), regulates fruit cell lignification in pear fruits (Figure2) [26**]. 
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Based on whole genome resequencing of 60 pear varieties, researchers found that the 

promoter region of MIR397a contains the TCA-element (salicylic acid response 

element), which possesses a single base (A-G) mutation. This SNP is associated with 

low levels of fruit lignin [26**].  

Fruit softening is also believed to affect the fruit texture, where cell wall 

degradation is critical [55]. In grape, miRNA-mediated regulations that repress the 

target genes involved in cell wall degradation are vital for fruit softening [56]; 

miR479, miR399g, miR397a, miR3627-5p, miR2950, and novel_miR22 are involved 

in grape berry softening, via regulation of their target genes associated with fruit 

softening and membrane lipid peroxidation, including β-GALACTOSIDASE (BGA), 1-

AMINOCYCLOPROPANE-1-CARBOXYLIC ACID OXIDASE 3 (ACO3), 

LIPOXYGENASE (LOX), RIPENING-INDUCED PROTEIN GRIP22 

(Grip22)/PHENYLALANINE MMONIA-LYASE (PAL), CHALCONE SYNTHASE 

(CHS), and PECTINESTERASE (PE) [56]. SlymiR157 and SlymiR156 are involved 

in the regulation of the LeSPL-CNR, which belongs to the SPL TF family, 

contributing greatly to tomato fruit softening [11]. 

Conclusion and prospects 

Great progress has been made in miRNA research over the last two decades due 

to next-generation sequencing and increasingly powerful bioinformatics tools. Many 

miRNA/phasiRNAs engaged in fruit regulation have been unveiled. Besides the 

conserved miRNA and phasiRNA pathways, lineage- or species-specific 

miRNAs/phasiRNAs also regulate traits that might be vital in a certain species, such 

as stone cell development in the pear and tannin metabolism in persimmon, which is 

beneficial to practical breeding programs. Other horticultural plants are less 

understood so far. The biological function of miRNAs in fruit traits are obscure, 

owing to the lack of an effective transformation system in woody fruit trees. Hence, 

function validations through overexpression, RNAi, and CRISPR out are hardly used 

in woody fruit trees. Instead, VIGS with a TRSV-based expression vector could 
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express and suppress (via STTM) the target miRNAs, and has been becoming a 

powerful tool to study the function of miRNA and its target genes [57].  

Small RNAs, especially phasiRNAs, are capable of cell-to-cell movement and 

long-distance migration through the phloem [58]. Grafting is widely used in fruit 

crops. In a grafting plant, the vascular tissues of the stock and scion are placed in 

contact with each other. With the long-distance mobility of phasiRNAs, we might 

deliver a silencing signal from a scion that overexpresses a PHAS locus harboring 

serval phasiRNAs to the rootstock to remotely regulate the expression level of 

horticultural trait related genes or stress-resistant genes. This might be a useful tool to 

manipulate value traits of scion or rootstock during orcharding.  
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Figure legends 

 

Figure 1. Conserved miRNA pathways involved in the fruit development. miRNAs 

and their different target genes were sorted by the fruit development stages that they 

were involved. miR156/157 and miR159/319 mediated regulatory pathways were 

involved in all stages of fruit development. miR160, miR166 and miR397 affect fruit 

set and growth while miR172, miR164, and miR396 affect fruit growth and fruit 

ripening. miR393-TIR1 were involved only in fruit set while miR399, miR528, and 

miR828/858 mediated pathways were involved in fruit ripening. 
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Figure 2. Main miRNA pathways involved in fruit quality. miRNA pathways involved 

in fruit size and shape were highlighted in orange, miRNA pathways involved in fruit 

flavor were highlighted in blue, miRNA pathways involved in fruit coloration were 

highlighted in red, miRNA pathways involved in fruit texture were highlighted in 

green. 
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iR
22 

miRNA pathways involved in fruit development were highlighted in purple, miRNA pathways involved in fruit 

size and shape were highlighted in orange,  miRNA pathways involved in fruit flavor were highlighted in blue, 
miRNA pathways involved in fruit coloration were highlighted in red, miRNA pathways involved in fruit 
texture were highlighted in green. 

 *Grade A indicates the miRNA regulatory pathway is validated by multiple solid experiments including 
transgenic assay. Grade B indicates the miRNA regulatory pathway is validated by multiple experiments and/or 
illumina sequencing, but without transgenic assay. Grade C indicates the miRNA regulatory pathway were 
identified by illumina sequencing only. 
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