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Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades,
our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on
both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have
been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and
agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale po-
pulation level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the
catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their
collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic
modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of
epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural
benefits of epigenetic insights.

epigenetics | plant development | plant immunity | crop improvement | stress responses

Introduction

Epigenetic regulation is crucial for living organisms from
growth and development to environmental adaptations. With
the rapid development of technologies and methodologies, the
investigations of epigenetic regulation have been capacitated
from single locus to genome wide scale. This leads to an
explosive understanding of the importance of non-coding
intergenic regions and silenced heterochromatin. Novel epige-
netic modifications at DNA, RNA, and histone levels and
regulatory mechanisms involving non-coding RNAs and
chromatin architectural changes have also been uncovered
and intensively studied. Importantly, new sequencing technol-
ogies enabled in-depth studies of agricultural and horticultural
plants, as well as comparative evaluations from a population
level, leading to an increasing awareness of epigenetic
regulations in key agronomic traits. Here we present a
comprehensive review on plant epigenetics, covering basic
molecular mechanisms revealed mainly from model plant
Arabidopsis to their roles in physiological processes and
agronomic traits in agriculturally important plants, including
rice, wheat, soybean, and tomatoes. We further discuss recent
advances in technologies developed for epigenetic modifica-
tions and crop improvement. We conclude with a discussion on
the perspectives for the efficient application of epigenetic
strategies in crop improvement.

DNA methylation

General features of DNA methylation

DNA methylation is a conserved epigenetic mark in mammals
and plants. It functions in transposable element (TE) silencing
and gene regulation, and is therefore important for the
maintenance of genome integrity and the regulation of plant
development (Law and Jacobsen, 2010; Zhang et al., 2018b). In
plants, DNA methylation occurs in different sequence contexts,
including CG, CHG, and CHH (where H = A, T, or C), the levels of
which vary considerably across plant species, from as low as
5.4% (CG), 2.6% (CHG), and 2.5% (CHH) in Chlamydomonas
reinhardtii to as high as 92.6% (CG), 81.2% (CHG), and 18.9%
(CHH) in Beta vulgaris (Cokus et al., 2008; Niederhuth et al.,
2016). Besides, DNA methylation tends to be differentially
enriched in different cell types or tissues (Bartels et al., 2018;
Kawakatsu et al., 2016; Walker et al., 2018), which also appears
as a widely conserved phenomenon across flowering plants (Xu
et al., 2022; Zemach et al., 2010; Zhang et al., 2022a).

Establishment and maintenance of DNA methylation

A great body of knowledge has been obtained through
Arabidopsis studies, showing that de novo DNA methylation is
established through the RNA-directed DNA Methylation (RdDM)
pathway. This pathway consists of the DNA-dependent RNA
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polymerase IV (Pol IV)-mediated “triggering step” and the Pol V-
mediated “targeting step” (Du et al., 2022; Huang et al., 2021b;
Zhai et al., 2015a). Besides the two plant-specific RNA
polymerases, the key components of the RdDM pathway also
include RNA-DEPENDENT RNA POLYMERASE 2 (RDR2),
DICER-LIKE 3 (DCL3), ARGONAUTE 4 (AGO4), AGO6, AGO9,
DOMAIN REARRANGED METHYLTRANSFERASE 2 (DRM2),
CLASSY1-4, SAWADEE HOMEODOMAIN HOMOLOGUE 1
(SHH1), SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG
PROTEIN 2 (SUVH2), SUVH9, DEFECTIVE IN RNA DIRECTED
DNA METHYLATION 1 (DRD1), DEFECTIVE IN MERISTEM
SILENCING 3 (DMS3) and RNA-DIRECTED DNAMETHYLATION
1 (RDM1) (Johnson et al., 2014; Law et al., 2013; Sigman et al.,
2021; Wang et al., 2023a; Wang et al., 2022e; Wongpalee et al.,
2019; Xie et al., 2023a; Yang et al., 2018a; Zhong et al., 2012;
Zhou et al., 2018a). Recent studies have also highlighted the role
of the microrchidia (MORC) family ATPases in facilitating the
RdDM pathway (Li et al., 2023d; Xue et al., 2021b).
In Arabidopsis, CG cytosine methylation is maintained by

METHYLTRANSFERASE 1 (MET1), which is proposed to be
recruited to hemi-methylated DNA by VARIANT IN METHYLA-
TION (VIM) proteins. This model is reminiscent of the function of
mammalian DNA methyltransferase 1 (DNMT1) and UHRF1
(ubiquitin-like with PHD and RING finger domains 1) (Bostick et
al., 2007; Sharif et al., 2007; Woo et al., 2008; Woo et al., 2007;
Zhang et al., 2018b).
In Arabidopsis, most CHG methylation is maintained by

CHROMOMETHYLASE 3 (CMT3), and the positive feedback loop
involves H3K9 methyltransferase KRYPTONITE (KYP, also
known as SUVH4), along with its homologs SUVH5 and SUVH6
(Lindroth et al., 2001; Stroud et al., 2014). Mechanistically,
SUVH4/5/6 bind to methylated DNA to catalyze H3K9me2, and
H3K9me2 is recognized by the DNA methyltransferases CMT2
and CMT3, which then catalyze DNA methylation (Du et al.,
2012). A similar mechanism has also been implicated in maize
(Du et al., 2012; Stoddard et al., 2019).
In regions where RdDM activity is suppressed, such as the H1-

containing heterochromatin, CHH methylation is mainly main-
tained by CMT2. Since CMT2 can also be recruited through the
recognition of the H3K9me2 histone modification, which in turn
is affected by CMT3-dependent CHG methylation, the main-
tenance of asymmetric CHH methylation may also be affected by
CMT3 (Stroud et al., 2014).

DNA demethylation

Demethylation of DNA can occur via two primary pathways:
passive demethylation and active demethylation (Zhang et al.,
2022a). Passive demethylation occurs when the activity of DNA
methyltransferases is inhibited during DNA replication, resulting
in a dilution of methylation marks (Zhang et al., 2018b). One
example is the transcriptional repression of MET1, CMT3, and
KYP by the DREAM complex, which consists of DIMERIZATION
PARTNER, RETINOBLASTOMA-LIKE PROTEIN, E2F, and MUL-
TIVULVAL B CORE (Ning et al., 2020).
In contrast, active demethylation is catalyzed by DNA

glycosylases and apurinic/apyrimidinic lyases, which include
REPRESSOR OF SILENCING 1 (ROS1), DEMETER (DME),
DEMETER-LIKE 2 (DML2), and DML3 (Du et al., 2023; Zhang
et al., 2022a). For efficient demethylation at certain genomic loci,
the involvement of the INCREASED DNA METHYLATION (IDM)

complex and the SWI2/SNF2-Related 1 (SWR1) chromatin
remodeling complex are also essential (Duan et al., 2017a; Nie
et al., 2019). Additionally, the expression of ROS1 is positively
regulated by the level of DNA methylation within its promoter
(Liu et al., 2021a; Xiao et al., 2019; Zhang et al., 2022a).

DNA methylation readers

In plants, DNA methylation is recognized by proteins containing
either the methyl-CpG binding domain (MBD) or the SET- and
RING-ASSOCIATED (SRA) domain. These proteins function in
various DNA methylation-related pathways, including DNA
methylation or demethylation, histone modification, transcrip-
tional activation or silencing, etc. Specifically, the Arabidopsis
genome encodes thirteen MBD proteins, among which MBD2,
MBD5, MBD6, and MBD7 are known to bind to symmetrically
methylated DNA (Ichino et al., 2021; Springer and Kaeppler,
2005; Wang et al., 2024b; Zemach and Grafi, 2003). These MBD
proteins play crucial roles in gene silencing or participating in the
DNA demethylation process (Boone et al., 2023; Feng et al.,
2021; Ichino et al., 2021; Ichino et al., 2022; Lang et al., 2015;
Potok et al., 2019; Preuss et al., 2008; Ren et al., 2024; Sijacic et
al., 2019; Wang et al., 2015; Wang et al., 2024b).
In Arabidopsis, SRA domains are found in both VIM and SUVH

family proteins. VIM1–3 possibly bind to hemi-methylated CG
sites and further recruit MET1 to maintain CG DNA methylation
(Woo et al., 2008; Woo et al., 2007). SUVH1 and SUVH3
counteract the silencing effects of DNA methylation by recruiting
DNAJ transcriptional activators (Harris et al., 2018; Li et al.,
2016; Li et al., 2018a; Nie et al., 2019; Xiao et al., 2019; Zhao et
al., 2019a). SUVH4–6 recognize CHG DNA methylation and
catalyze the H3K9me2 modification, forming a positive feedback
loop with CMT3 (Du et al., 2014; Ebbs and Bender, 2006;
Jackson et al., 2002; Li et al., 2018a). SUVH2 and SUVH9
recognize methylated DNA and recruit Pol V and MORC6 to
reinforce the silencing effect of the RdDM pathway (Jing et al.,
2016; Johnson et al., 2014; Liu et al., 2014c).

Histone modifications and variants

H3K27me3

H3K27me3, a repressive histone mark predominantly found in
euchromatic regions, is pivotal in orchestrating plant develop-
ment and responses to environmental stimuli (Kakutani et al.,
2011; Kim et al., 2021; Wang et al., 2024c; Wu et al., 2020;
Xiao and Wagner, 2015; Zhang et al., 2007). H3K27me3 can be
added by the evolutionarily conserved Polycomb repressive
complex 2 (PRC2) and erased by a group of Jumonji (JMJ)
domain-containing histone demethylases, including JMJ11,
JMJ12, JMJ13, JMJ30, and JMJ32 (Crevillén et al., 2014; Gan et
al., 2014; Lu et al., 2011; Margueron and Reinberg, 2011;
Zheng et al., 2019b).
PRC2 can be recruited to certain chromatin regions by

transcription factors (TFs) that recognize Polycomb response
elements (PREs), leading to cell type-, tissue type- or develop-
mental stage-specific deposition of H3K27me3 (Kim et al., 2022;
Xiao et al., 2017a; Zhou et al., 2018b). This process is
exemplified by the core components of PRC2: EMBRYONIC
FLOWER2 (EMF2), which regulates reproductive growth (Yoshi-
da et al., 2001); VERNALIZATION2 (VRN2), involved in
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vernalization (Helliwell et al., 2006); and FERTILIZATION-
INDEPENDENT SEED2 (FIS2), which impacts seed development
(Hennig et al., 2005).
Conversely, JMJ histone demethylases dynamically demethy-

late H3K27me3, alleviating transcriptional repression during
plant adaptation to environmental challenges, such as heat stress
responses (He et al., 2021; He et al., 2022; Liu et al., 2019b;
Yamaguchi et al., 2021). A recent study has highlighted the
interaction between nuclear-localized α-ketoglutarate dehydro-
genase (KGDH) and various JMJ proteins, which inhibits their
demethylase activity and thus modulates genome-wide gene
expression under light conditions (Huang et al., 2023). Both JMJ
proteins and the PRC2 complex are integral to cell fate
determination, including the development of stomata cells and
male germline cells (Kim et al., 2022; Zhu et al., 2023).

H3K9me2

Di- or tri-methylation of histone H3 lysine 9 (H3K9me2 and
H3K9me3) is a hallmark of constitutive heterochromatin across
eukaryotes (Grewal, 2023). In somatic tissues, H3K9me2 is
typically mutually exclusive with the facultative heterochroma-
tin mark H3K27me3. However, these two marks can coexist at
certain loci in Arabidopsis pollen vegetative cells and endosperm
(Moreno-Romero et al., 2019; Zhu et al., 2023), highlighting the
tissue specificity in defining heterochromatin.
In Arabidopsis, three SUVH methyltransferases, SUVH4–6, are

responsible for catalyzing H3K9me2 at pericentromeric regions
(Hu and Du, 2022). Different SUVH proteins exhibit distinct
binding preferences towards DNA methylation of different
sequence contexts (Li et al., 2018a; Zhang et al., 2023d). The
removal of H3K9me2 is catalyzed by the H3K9me2 demethylase,
INCREASE IN BONSAI METHYLATION 1 (IBM1) (Inagaki et al.,
2010). The loss-of-function mutant of IBM1 exhibits ectopic
H3K9me2 accumulation and transcriptional silencing, which is
also accompanied by the removal of activating histone modifica-
tions (Inagaki et al., 2017; Oya et al., 2022). Additionally, DNA
Topoisomerase VI acts to prevent the spreading of H3K9me2 at
pericentromeric regions (Méteignier et al., 2022).
The H3K9me2 readers include Agenet domain-containing

protein1 (ADCP1 or AGDP1), and AGDP3, which function in
heterochromatin silencing and gene anti-silencing, respectively
(Zhang et al., 2018a; Zhao et al., 2019b; Zhou et al., 2022).

H3K4me3

In eukaryotes, H3K4me3 is a conserved “activating” histone
modification predominantly located near the transcription start
sites (TSS) of actively transcribed genes (Howe et al., 2017). The
current working model suggests that H3K4me3 methyltrans-
ferases interact with the serine 5 phosphorylated C-terminal
domain of RNA polymerase II (CTD-Ser5P), which further leads
to co-transcriptional deposition of H3K4me3 (Ding et al., 2011b;
Fromm and Avramova, 2014; Ng et al., 2003).
In Saccharomyces cerevisiae, the Set1 methyltransferase, a

component of the COMPASS (Complex Proteins Associated with
Set1) complex, is responsible for mono-, di-, and trimethylation at
histone H3 lysine 4 (H3K4me1/2/3) (Briggs et al., 2001; Miller et
al., 2001; Ng et al., 2003; Roguev et al., 2001). The Arabidopsis
genome encodes five Trithorax (ATX1 to ATX5) and seven
Trithorax-related (ATXR1 to ATXR7) proteins (Alvarez-Venegas

and Avramova, 2002; Baumbusch et al., 2001). ATX1 has been
shown to exhibit histone H3K4 methyltransferase activity in
plants (Alvarez-Venegas and Avramova, 2002).

H3K36me3

H3K36me3 represents another type of “activating” histone
modification, which is deposited by the enzyme Set2 in yeast
and SETD2 in humans (McDaniel and Strahl, 2017; Strahl et al.,
2002). Set2 interacts with the serine 2 phosphorylated C-
terminal domain of RNA polymerase II (CTD-Ser2P) and
predominantly deposits H3K36me3 towards the 3′ ends of genes,
which highlights its function in transcription elongation (Li et al.,
2003; Xiao et al., 2003). In Arabidopsis, the homologs of yeast
Set2 include SDG4, SDG7, SDG8, and SDG26 (Cartagena et al.,
2008; Ji et al., 2024; Xu et al., 2008; Zhao et al., 2005). Levels of
both H3K36me2 and H3K36me3 modifications are significantly
diminished in sdg8 mutants, but not in sdg26 mutants (Xu et al.,
2008). SDG8 contains a CW domain and exhibits a binding
preference for H3K4me1, establishing a direct link between
H3K4 and H3K36 modifications (Liu and Huang, 2018).

Histone acetylation

Histone acetylation (HAc) weakens the interaction between
histones and DNA by neutralizing the positive charge of histones,
thereby promoting transcription (Allis and Jenuwein, 2016).
HAc occurs on over 40 different lysine residues across all four
core histones (Shvedunova and Akhtar, 2022). The dynamic
regulation of gene expression by HAc involves its “writing” by
histone acetyltransferases (HATs) (Brownell et al., 1996),
“reading” by bromodomain-containing proteins (Dhalluin et
al., 1999), and “erasing” by histone deacetylases (HDACs) (Allis
and Jenuwein, 2016; Taunton et al., 1996). In addition, both
HATs and HDACs also exhibit enzymatic activities toward non-
histone proteins (Chen et al., 2017; Shvedunova and Akhtar,
2022).
Histone deacetylation, mediated by HDACs, plays a critical role

in numerous biological processes (Chen et al., 2020; Cui et al.,
2023; Xiong et al., 2022). Recent research underscores the
importance of histone deacetylation in the accumulation of other
repressive epigenetic modifications (Qüesta et al., 2016; Yang et
al., 2022a; Zeng et al., 2020), the establishment of hetero-
chromatin (Qüesta et al., 2016; Watts et al., 2018; Żylicz et al.,
2019), and transcriptional silencing (Earley et al., 2006;
Hristova et al., 2015; Yang et al., 2020b).
The bromodomain is a conserved protein module present in

HAc “reader” proteins in both animals and plants. In Arabidop-
sis, BROMODOMAIN-CONTAINING PROTEIN1 (BRD1), BRD2,
and BRD13 are critical components of the SWI/SNF (switch
defective/sucrose nonfermentable) chromatin remodeling com-
plex (Jarończyk et al., 2021; Yu et al., 2021c). MBD9 is another
example of a bromodomain containing protein, and a SWR1
complex component, which functions in the deposition of H2A.Z
and DNA demethylation (Nie et al., 2019; Potok et al., 2019;
Sijacic et al., 2019).

Histone variants

The core nucleosome is an octameric complex containing two
molecules each of the H2A, H2B, H3, and H4 histones. During
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DNA replication, these histones are integrated into the newly
synthesized chromatin, and can be subsequently replaced by
different histone variants to confer distinct regulatory features.
In plants, there are three commonly observed H3 histone

variants: the replication-dependent H3.1, the replacement
variant H3.3, and the centromeric H3 (CenH3). H3.1 is enriched
in heterochromatin, while H3.3 is enriched in euchromatin
(Stroud et al., 2012). The differential assembly and enrichment of
H3.1 and H3.3 in various chromatin regions are influenced by
their sequence variations at positions 87 and 90 (serine 87 and
alanine 90 in H3.1; histidine 87 and leucine 90 in H3.3) (Shi et
al., 2011). Additionally, the plant-specific phenylalanine residue
at position 41 of H3.1 is also important for its genome-wide
distribution (Lu et al., 2018). In addition to H3.1 and H3.3, other
plant H3 variants include H3.10 and H3.15, which are found in
sperm and wounded tissues, respectively.
H2A variants, namely H2A.Z, H2A.X, and the plant-specific

H2A.W, exhibit distinct characteristics. In actively transcribed
genes, H2A.Z predominantly occupies the +1 nucleosome, while
H2A and H2A.X are spread throughout the entire gene body (Lei
and Berger, 2020). Notably, H2A.Z is also abundant in the gene
bodies of transcriptionally repressed genes and facultative
heterochromatin (Lei and Berger, 2020; Talbert and Henikoff,
2014). In contrast, H2A.W is present in constitutive hetero-
chromatin and transposons but is absent in genes. The
incorporation of H2A.W relies on the chromatin remodeler
DECREASE IN DNA METHYLATION 1 (DDM1) and aids in
heterochromatin condensation (Osakabe et al., 2021; Yelagan-
dula et al., 2014). Additionally, H2A.X plays a role in DNA
damage repair (Lorković and Berger, 2017; Waterworth et al.,
2019). Consequently, the distribution pattern of H2A variants
distinguishes genes from transposons and is linked with their
transcriptional activities in varying ways.
H2B variants exhibit significant diversity and lineage-specific

characteristics in plants (Jiang et al., 2020). Within the
Arabidopsis genome, there are 11 genes encoding H2B, which
can be categorized into three classes based on sequence
conservation. The majority of H2B genes show elevated
expression in organs undergoing active cell division, while
H2B.3 is preferentially expressed in mature tissues, suggesting its
function as a replacement variant (Jiang et al., 2020). Notably,
H2B.7/8/10 are predominantly found in pollen, with H2B.8
potentially playing a role in chromatin compaction within sperm
cells through phase separation (Buttress et al., 2022).
Histone H1 originates from bacteria, and exists in three forms

in Arabidopsis (Kasinsky et al., 2001). H1.1 and H1.2 exhibit
ubiquitous and stable expression, while H1.3 is induced by
stresses, suggesting a potential role as a replacement variant
(Jerzmanowski et al., 2000).
Histone variants also influence plant biological processes

through variant-associated modifications (Borg et al., 2021).
For instance, both H3.10 and H3.15 are characterized by the
absence of H3K27me3 modifications, a possible mechanism of
H3K27me3 reprogramming during gametogenesis and cell
dedifferentiation (Borg et al., 2020; Yan et al., 2020). The
maintenance of heterochromatin depends on H3.1K27me1
modification mediated by ATXR5/6, which is inhibited by serine
31 in H3.3 (Dong et al., 2021; Jacob et al., 2014). Moreover,
H3.1 is essential for the inheritance of H3K27me3 during cell
division (Jiang and Berger, 2017). The diverse functions of H2A.Z
in gene expression may also involve its modifications. Acetylated

H2A.Z is localized around the TSS of actively transcribed genes
(Crevillén et al., 2019), while monoubiquitylated H2A.Z is
deposited along the body of transcriptionally repressed genes
(Gómez-Zambrano et al., 2019). DNA damage repair relies on the
phosphorylation of the SQ motif of H2A.X and H2A.W.7 in
euchromatin and heterochromatin, respectively (Lorković et al.,
2017; Turinetto and Giachino, 2015).

Chromatin remodeling

In Arabidopsis, major types of chromatin remodelers include
SWI/SNF, ISWI (imitation switch), INO80 (inositol requiring 80),
SWR1, and CHD (chromodomain helicase DNA-binding) (Clapier
and Cairns, 2009). Except for CHD, all other chromatin
remodelers exist as multi-subunit complexes, whereas the
Arabidopsis CHD3 chromatin remodeler, PICKLE, mainly exits
as a monomer. ISWI and CHD remodelers promote nucleosome
assembly and sliding, SWI/SNF enhances chromatin accessibility
by evicting nucleosomes, SWR1 replaces the canonical histone
H2A with its variant, H2A.Z, while INO80 catalyzes the
reciprocal reaction (Clapier et al., 2017). These chromatin
remodelers play essential roles in various biological processes,
including transcription, DNA replication, DNA damage repair,
and DNA methylation (Han et al., 2015; Shang and He, 2022).

The composition and function of chromatin-remodeling
complexes

The Arabidopsis ISWI chromatin remodelers consist of two
redundant core subunits, CHROMATIN REMODELING 11
(CHR11) and CHR17, along with DDT domain-containing
accessory proteins (Dong et al., 2013). Through proteomics
assays, three types of ISWI complexes were identified, including
CRAF (CHR11/17-RLT1/2-ARID5-FHA2), CDM (CHR11/17-
DDP1/2/3-MSI3), and CDD (CHR11/17-DDR/W) (Gu et al.,
2020; Shang and He, 2022; Tan et al., 2020). Similar to other
eukaryotes, the ISWI complex in plants regulates nucleosome
spacing, which in turn influences the transcription of specific
genes and TEs (Li et al., 2014a; Zhang et al., 2023e).
In Arabidopsis, there are three classes of SWI/SNF chromatin

remodelers, which include the BRAHMA (BRM) containing BAS-
type, the SPLAYED (SYD) containing SAS-type, and the
MINUSCULE1/2 (MINU1/2) containing MAS-type (Diego-Martin
et al., 2022; Fu et al., 2023b; Guo et al., 2022a; Han et al., 2015;
Jarończyk et al., 2021; Lei et al., 2024; Yu et al., 2021c; Yu et al.,
2020). BAS and SAS bind to numerous common target genes,
while MAS primarily binds to a distinct set of target genes (Fu et
al., 2023b; Guo et al., 2022a). Although all three SWI/SNF
complexes facilitate chromatin accessibility near TSS, SAS
mainly acts at distal promoter and upstream intergenic regions
(Fu et al., 2023b; Guo et al., 2022a).
The INO80/SWR chromatin remodelers, which include SWR1

and INO80, are characterized by a conserved split ATPase
domain (Clapier and Cairns, 2009). In Arabidopsis, the SWR1
chromatin remodeler, known as PHOTOPERIOD-INDEPENDENT
EARLY FLOWERING1 (PIE1), is responsible for the replacement
of H2A with H2A.Z, a process critical for the regulation of gene
transcription. Other interacting components of the Arabidopsis
SWR1 complex include TRA1A/B, MBD9, as well as the ISWI
chromatin remodelers CHR11/17 (Gómez-Zambrano et al.,
2018; Luo et al., 2020c; Nie et al., 2019; Potok et al., 2019;
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Sijacic et al., 2019). Both TRA1A/B and MBD9 are essential for
maintaining the genome-wide levels of H2A.Z (Luo et al., 2020c;
Potok et al., 2019; Sijacic et al., 2019), whereas CHR11/17
couple H2A.Z deposition with nucleosome positioning (Luo et al.,
2020c).
The Arabidopsis INO80 complex comprises three modules: the

ATPase module, the helicase-SANT-associated (HSA) module,
and the N-terminal domain (NTD) module (Shang et al., 2021).
Studies have indicated the role of the Arabidopsis INO80 complex
in both H2A.Z eviction and deposition (Willige et al., 2021; Xue
et al., 2021a; Yang et al., 2020a). Notably, the INO80 NTD
module contains plant-specific accessory subunits and interacts
with the COMPASS complex, mediating histone H3K4me3
modification (Shang et al., 2021). Arabidopsis INO80 has been
shown to regulate various biological processes, including flower-
ing transition, thermo-morphogenesis, ethylene signaling, and
DNA damage repair (Shang and He, 2022; Xue et al., 2021a).

Functional interplay between chromatin remodelers, histone
modifications, histone variants and histone chaperones

The proper functions of chromatin remodelers depend on their
target specific recruitment on chromatin. One prevalent recruit-
ing mechanism is through direct or indirect recognition of
specific histone modifications or DNA motifs (Gómez-Zambrano
et al., 2018; Nie et al., 2019; Tan et al., 2020). For example,
Arabidopsis BAS-type SWI/SNF complexes can recognize histone
acetylation through their subunits BRD1, BRD2, and BRD13 (Yu
et al., 2021c). In addition, since certain chromatin remodeler
components exhibit differential binding preference towards
specific histone variants (Gu et al., 2020), histone variants also
influence the enrichments and function of chromatin remodelers
at specific chromatin loci (Corcoran et al., 2022; Kang et al.,
2019). For example, FORKHEAD-ASSOCIATED DOMAIN 2
(FHA2), an ISWI subunit, demonstrates a strong preference for
binding to the H2A.Z/H2B histone dimer, but not to the H2A/
H2B dimer (Gu et al., 2020).
Histone chaperones also exert a profound influence on the

process of chromatin remodeling (Du et al., 2020; Michl-
Holzinger et al., 2022; Zhong et al., 2022). Histone chaperones
can be classified based on the types of histone variants they
interact with (Avvakumov et al., 2011). Specifically, the H2A-
H2B histone chaperones include FAcilitates Chromatin Tran-
scription (FACT), Nucleosome Assembly Protein 1 (NAP1),
NAP1-Related Protein 1 (NRP1), and Chaperone for H2A.Z-
H2B 1 (Chz1) (Du et al., 2020; Luo et al., 2020a; Wang et al.,
2020c; Wu et al., 2023). The H3-H4 histone chaperones include
Anti-Silencing Factor 1 (ASF1) and histone regulator A (HIRA).
It has been shown that AtChz1A/B promote the deposition of
H2A.Z in chromatin by interacting with the SWR1 complex
subunit, ACTIN-RELATED PROTEIN 6 (ARP6) (Wu et al., 2023).
Similarly, ASF1 collaborates with HIRA, playing a pivotal role in
the deposition of the H3.3-H4 histone variants in eukaryotic
organisms. These examples underscore the importance of
chaperone partnerships in ensuring the correct assembly of
nucleosomes (Zhong et al., 2022).
Alternatively, chromatin remodelers can also be recruited to

chromatin by interacting with sequence-specific transcription
factors (Liang et al., 2022; Richter et al., 2019; Shu et al., 2022;
Willige et al., 2021; Xue et al., 2021a; Zhang et al., 2023a; Zhu
et al., 2024). For instance, the recruitment of BRM to

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1)
is facilitated by the GNC (GATA, NITRATE-INDUCIBLE, CARBON
METABOLISM INVOLVED) transcription factor (Yang et al.,
2022c). The involvement of transcription factor in chromatin
remodeling also explains mechanistically how plants regulate
gene expression to cope with diverse environmental signals. For
example, under shade conditions, PHYTOCHROME-INTERACT-
ING FACTOR 7 (PIF7) recruits the ASF1-HIRA complex to shade-
responsive genes, mediating the deposition of H3.3 (Yang et al.,
2023a).
Upon the genomic recruitments, chromatin remodelers are

also capable of modulating, either directly or indirectly, both
histone modifications and gene transcription (Hu et al., 2022a; Li
et al., 2022c; Yang et al., 2020b). For example, recent studies
have reported that the chromatin recruitment of INO80 complex
is associated with both EARLY FLOWERING 7 (ELF7) and
COMPASS-like modules, which contribute to the regulation of
transcription elongation and histone modification (Xue et al.,
2021a; Zhao et al., 2023a).

Organization of 3D chromatin

Chromosomes occupy specific regions in the nucleus instead of
being randomly distributed during interphase in eukaryotes. This
structured organization, known as the chromosome territory,
has been observed through both fluorescence in situ hybridiza-
tion (FISH) and high-throughput chromosome conformation
capture (Hi-C) experiments (Bintu et al., 2018; Cremer and
Cremer, 2001; Lieberman-Aiden et al., 2009; Stevens et al.,
2017). Based on the relative positioning of centromeres and
telomeres post-folding, both the “Rosette” and “Rabl” conforma-
tion have been reported for different plant species (Dong and
Jiang, 1998; Oko et al., 2020; Tiang et al., 2012). Although the
chromosome territory may undergo dynamic changes under
certain conditions (de Lima et al., 2022; Ginno et al., 2018;
Parada et al., 2004; Zhu and Wang, 2019), whether such
changes will lead to phenotypic consequences remains to be
determined (Wang et al., 2023f).
In a nucleus, different chromosome regions are found to be

partitioned into two epigenetically distinct groups, namely A/B
compartments, forming a distinct “plaid” pattern in the Hi-C
interaction map (Dong et al., 2017; Grob et al., 2014; Liao et al.,
2022; Liu et al., 2017; Pei et al., 2022; Wang et al., 2021a;
Wang et al., 2018). The A compartments are associated with
activating chromatin features, including higher levels of gene
density, transcriptional activity, chromatin accessibility, and
active histone marks. To the contrary, the B compartments
exhibit the opposite characteristics (Bi et al., 2017; Dong et al.,
2017; Feng et al., 2014; Lieberman-Aiden et al., 2009; Wang et
al., 2022c; Wang et al., 2018; Yin et al., 2023; Zhang et al.,
2019b). Switches between A/B compartments are usually
associated with changes in gene transcriptional activities (Li et
al., 2024b; Ni et al., 2023; Pei et al., 2022; Wang et al., 2021b).
Topologically associating domains (TADs) and TAD-like

structures are megabase-sized contact domains found across
many species, including plants (Crane et al., 2015; Dixon et al.,
2012; Hsieh et al., 2015; Li et al., 2024b; Nora et al., 2012;
Phillips-Cremins et al., 2013; Sexton et al., 2012; Sun et al.,
2024a; Yin et al., 2023). Within each TAD are multiple
chromatin loops that define the interactions between different
genes and their regulatory regions. Two specific types of loops
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have been reported. While loops formed between the 5′ and 3′
ends of a gene were found to enhance gene transcription by
facilitating efficient use of RNA Polymerase II (Cavalli and
Misteli, 2013; Larkin et al., 2012; Tan-Wong et al., 2008), genic
loops within the gene body, excluding the promoter region, are
presumed to impede gene expression by blocking the recruitment
of RNA Polymerase II (Dong et al., 2018; Guo et al., 2018b).
Moreover, loops may bring into the contact of cis-regulatory
elements and specific epigenetic modifications, consequently
influencing the transcriptional activity (Ariel et al., 2014; Dong
et al., 2017; Krivega and Dean, 2012; Louwers et al., 2009;
Pontvianne and Liu, 2020; Sun et al., 2024a).
One key question in the field is the causal relationship between

chromosome 3D structures and other biological processes
occurred on chromatin, such as DNA and histone modifications
and gene transcription. Studies have shown that changes in DNA
methylation lead to compartment switches, and also affect TAD
boundary formation and loop formation, but have minimal
impacts on the relative territories occupied by different chromo-
somes (Feng et al., 2014; Gagliardi and Manavella, 2020;
Rowley et al., 2017; Wang et al., 2022b; Zhang et al., 2023f).
The importance of H3K27me3 and H2AK121ub in loop
formation has also been demonstrated in Arabidopsis (Huang
et al., 2021c; Yin et al., 2023).

Small RNA

Small RNA (sRNA)mediates gene and TE silencing in a sequence-
specific manner. Based on their biogenesis and functional modes,
plant small RNAs can be mainly categorized into microRNAs
(miRNAs), phased small interfering RNAs (phasiRNAs), and
heterochromatic siRNA (hc-siRNA). While plant miRNAs and
phasiRNAs mainly regulate gene expression at the post-
transcriptional level (PTGS) (Axtell, 2013; Vaucheret and
Voinnet, 2024), plant hc-siRNAs mainly regulate gene expres-
sion at transcriptional level (TGS) and are extensively studied for
their role in guiding DNA methylation through the RdDM
pathway (Yu et al., 2019). This chapter primarily describes the
noncanonical roles of miRNAs and phasiRNAs in TGS.

miRNAs

miRNAs are defined by the precise excision of the small RNA
duplex from the stem of a hairpin-like precursor RNA (Axtell and
Meyers, 2018). Plant genomes typically encode hundreds of
MIRNA (MIR) genes, many of which exist in families and are
deeply conserved across the plant kingdom (Cuperus et al., 2011;
Nozawa et al., 2012). Plant miRNAs regulate gene expression
mainly through target slicing, which requires a high degree of
complementarity between miRNA and its target mRNAs (Liu et
al., 2014b). Key protein factors of miRNA biogenesis include the
RNase III endonuclease DCL1 and RNA methyltransferase HEN1
(Park et al., 2002; Reinhart et al., 2002; Yu et al., 2005). The
mature miRNAs are assembled onto AGO effector proteins to
form miRNA-induced silencing complexes (miRISCs) (Baumber-
ger and Baulcombe, 2005; Fang and Qi, 2016; Mi et al., 2008).
Apart from their canonical roles in PTGS, miRNAs are

increasingly implicated in epigenetic regulation. Several Arabi-
dopsis epigenetic modifier genes, including CMT3, DRM2,
SUVH5/6, and INVOLVED IN DE NOVO 2 (IDN2), are miRNA
targets (Bennett et al., 2022; Jha and Shankar, 2014; Papareddy

et al., 2021). Besides, some miRNAs or secondary siRNAs
triggered by miRNAs have been shown to direct DNA methyla-
tion through a mechanism akin to RdDM (Bao et al., 2004; Chen
et al., 2011; Khraiwesh et al., 2010; Wu et al., 2012; Wu et al.,
2010). In addition, miRNAs initiate the biogenesis of “epigeneti-
cally activated” siRNAs (easiRNAs) by targeting and cleaving
transposon transcripts, which further mediate interploidy
hybridization barriers by monitoring chromosome dosage in
developing seeds (Borges et al., 2018; Creasey et al., 2014;
Martinez et al., 2018). Interestingly, in both animals and plants,
certain miRNAs and AGO protein are found to be associated with
chromatin and promote transcription (Liu et al., 2018a; Liu et
al., 2018b; Xiao et al., 2017b; Yang et al., 2019).

PhasiRNAs

The term “phased” describes the “head-to-tail arrangement” in
small RNA production following miRNA-mediated cleavage of
the primary precursors, which can occur via either a “one-hit” or
“two-hit” mode (Allen et al., 2005; Axtell et al., 2006; Fei et al.,
2013; Liu et al., 2020; Montgomery et al., 2008; Vazquez et al.,
2004; Xia et al., 2017). PhasiRNAs function in diverse plant
biological processes, including disease resistance and reproduc-
tive development (Fan et al., 2016; Johnson et al., 2009;
Shivaprasad et al., 2012a; Teng et al., 2020; Xia et al., 2015;
Zhai et al., 2011; Zhai et al., 2015b). Studies in both Arabidopsis
and maize have suggested that phasiRNAs also contribute to
DNA methylation in cis at their own loci (Wu et al., 2012; Zhang
et al., 2021a). For example, elevated levels of DNA methylation,
primarily in the CHH context, have been observed at maize
phasiRNAs producing loci (PHAS), which also depend on the
action of 24-nt phasiRNAs (Dukowic-Schulze et al., 2016; Zhang
et al., 2021a).

RNA modification and processing

N6-methyladenosine methyltransferase

Over 170 types of post-transcriptional RNA modifications have
been identified in all kingdoms of life. Among them, N6-
methyladenosine (m6A) is the most abundant mRNA modifica-
tion in eukaryotes, and the first RNAmodification found in plants
(Jia et al., 2011). In the following sections, we summarize the
cellular processes of writing, erasing, and reading of m6A
modifications, which are carried out by m6A methyltransferases,
m6A demethylases, and m6A binding proteins, respectively. The
functions of m6A modifications in regulating plant agronomic
traits are also discussed.
So far, two types of m6A methyltransferases have been

characterized in Arabidopsis. In one type, the m6A methyltrans-
ferase complex is composed of MTA (plant ortholog of human
METTL3), MTB (plant ortholog of human METTL14), and
FKBP12 INTERACTING PROTEIN 37KD (FIP37, an ortholog of
human WTAP), along with accessory proteins, including
VIRILIZER (VIR), HAKAI, and HAKAI-interacting zinc finger
protein (HIZ2) (Růžička et al., 2017; Shen et al., 2016; Song et
al., 2024; Zhang et al., 2022b; Zhong et al., 2008). Loss of
function of MTA, MTB, or FIP37 leads to embryo lethality in
Arabidopsis (Bodi et al., 2012; Shen et al., 2016; Zhong et al.,
2008). Conditional complementation of MTA or FIP37 during
the embryonic state results in severe defects in apical dominance,
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organ specification, and shoot meristem development (Bodi et al.,
2012; Shen et al., 2016). In rice, OsFIP37-ASSOCIATED
PROTEIN 1 (OsFAP1) recruits the m6A writer subunit OsFIP37
to install m6A on OsYUCCA3 transcript during male meiosis
(Cheng et al., 2022). OsFIP37 deficiency causes early degenera-
tion of microspores and abnormal meiosis (Zhang et al., 2019a).
Knockdown of MTA or MTB delays fruit ripening of strawberry
(Zhou et al., 2021a).
In addition to the MTA-MTB m6A methyltransferase complex,

FIONA1, an ortholog of human METTL16, serves as another
m6Amethyltransferase for U6 small nuclear RNA (snRNA) and a
small subset of mRNAs. Deficiency in FIONA1 leads to early
flowering and hypocotyl elongation under continuous red and
far-red light (Wang et al., 2022a). It has also been shown that
blue light receptor CRYPTOCHROME 2 (CRY2) and SUPPRES-
SOR of PHYTOCHROME A (SPA1) activate the RNA methyl-
transferase activity of FIONA1 to regulate chlorophyll
homeostasis in response to blue light (Jiang et al., 2023).
Furthermore, CRY2 also interacts with MTA, MTB, and FIP37 to
install m6A on transcripts of core circadian clock genes (Wang et
al., 2021e). These discoveries suggest that both types of m6A
methyltransferases function cooperatively downstream of the
blue light receptor to regulate plant light responses.

N6-methyladenosine demethylase

Mammals contain two Fe(II)/α-KG-dependent mRNA m6A
demethylases, FTO (fat mass and obesity associated gene) and
ALKBH5 (AlkB homologs 5). Although plants lack FTO
orthologs, recent studies have demonstrated the potential
application of human FTO in crop breeding, where overexpres-
sion of human FTO boosts field yield of rice and potato, and
increases gene editing efficiency in soybeans. This enhancement
is attributed to FTO-mediated m6A demethylation, which induces
chromatin openness (Bai et al., 2024; Yu et al., 2021a).
ALKBH9B and ALKBH10B, the Arabidopsis orthologs of

ALKBH5, have been characterized as functional m6A demethy-
lase (Duan et al., 2017b; Jia et al., 2011; Zheng et al., 2013).
ALKBH9B specifically removes m6A from the genomic RNA of
Alfalfa mosaic virus (AMV), and positively regulates viral
systemic invasion in plants (Martínez-Pérez et al., 2017).
Therefore, ALKBH9B serves as a potential target in obtaining
virus resistant crops. ALKBH10B regulates the m6A demethyla-
tion and the transcript stability of flowering regulator genes, such
as FT, SPL3, and SPL9. Deficiency in ALKBH10B leads to late
flowering phenotype (Duan et al., 2017b). Both ALKBH9B and
ALKBH10B regulate abscisic acid (ABA) responses in Arabidopsis
(Tang et al., 2021; Tang et al., 2022). In tomatoes, the m6A
demethylase SlALKBH2 removes the m6A modification from the
transcripts of SlDML2, a DNA demethylase, and is required for
the stabilization of SlDML2 transcripts and normal fruit ripening
(Zhou et al., 2019). OsALKBH9 is an m6A demethylase in rice,
and is required for male fertility. The null mutation in OsALKBH9
leads to defective tapetal programmed cell death (PCD) and
excessive accumulation of microspore exine (Tang et al., 2024).

N6-methyladenosine reader

In addition to m6A writers and erasers, five human YTH-domain
family proteins have been characterized as m6A readers. The
Arabidopsis and rice genome each encodes 13 and 12 YTH-

domain proteins, respectively, suggesting the redundancy and
complexity of plant m6A readers (Ao et al., 2023; Cai et al.,
2023; Guo et al., 2022b). Supporting this notion, the Arabidopsis
YTH domain proteins, EVOLUTIONARILY CONSERVED C-
TERMINAL REGION 2 (ECT2), ECT3, and ECT4 function
redundantly to regulate leaf morphogenesis and the ABA
responses (Arribas-Hernández et al., 2018; Arribas-Hernández
et al., 2020; Scutenaire et al., 2018; Song et al., 2023). Other
plant traits regulated by ECTs include trichome branching, and
responses to bacterial infection and abiotic stresses (Cai et al.,
2024; Lee et al., 2024; Wei et al., 2018; Wu et al., 2024).
ECTs function to regulate mRNA stabilities and translation

efficiency in association with RNA processing proteins, such as
poly(A) binding protein 2 (PAB2), PAB4, and the decapping
protein, decapping 5 (DCP5) (Cai et al., 2024; Song et al., 2023).
These regulatory activities of RNAs were found to occur in
specific stress related subcellular organelles and/or phase-
separated condensates (Lee et al., 2024; Wu et al., 2024). For
example, ECT1 sequesters SA-induced m6A-modified mRNAs for
degradation in cytosolic ECT1 condensates that colocalize with
processing bodies (P-bodies) and stress granules (SGs) in response
to bacterial infection (Lee et al., 2024).
In addition, the long isoform of CLEAVAGE AND POLYADE-

NYLATION SPECIFICITY FACTOR 30 (CPSF30-L), which con-
trols the choice of polyadenylation sites, is a plant-specific m6A
reader. Disruption of CPSF30-L leads to late flowering, ABA
hypersensitivity, and abnormal nitrate metabolism (Hou et al.,
2021; Song et al., 2021). FLOWERING LOCUS K (FLK), which
contains K-homology (KH) motifs, has been characterized as a
new type of m6A reader. It reduces the stability and alters the
splicing of FLOWERING LOCUS C (FLC) to regulate the floral
transition (Amara et al., 2023). The RNA binding protein EARLY
HEADING DATE6 (EHD6) directly interacts with the m6A reader
YTH07, enhancing its m6A binding ability. EHD6 recruits
YTH07 and sequesters m6A-modified CONSTANS-like 4 (OsCOL4)
transcripts into phase-separated condense (RNP granule), there-
by inhibiting protein translation and promoting rice flowering
(Cui et al., 2024).

RNA 5-methylcytosine

RNA 5-methylcytosine (m5C) modification is another prevalent
mark found across various types of RNAs, including mRNAs,
tRNAs, rRNAs, and other non-coding RNAs (Gao and Fang,
2021; Xue et al., 2022). In plants, m5C is mainly enriched within
the coding sequences (Cui et al., 2017; David et al., 2017; Tang
et al., 2020). In humans, RNA m5C methyltransferases (RCMTs)
are primarily composed of the NOL1/NOP2/SUN domain (NSUN)
family proteins (Trixl and Lusser, 2019; Yang et al., 2017b). The
plant homologs of human NSUN proteins have also been
identified, such as OsNSUN2 in rice and AtTRM4B in Arabidopsis
(Amort et al., 2017; Cui et al., 2017; Tang et al., 2020). Defects
in plant m5C methyltransferases lead to developmental defects of
root apical meristems and chloroplasts (Cui et al., 2017; David et
al., 2017; Tang et al., 2020).
In addition to RNAm5C writers, m5C demethylases such as Tet

methylcytosine dioxygenase 2 (TET2) and ALKBH1, and m5C
reader proteins such as Aly/REF export factor (ALYREF) have
also been studied in animals (Kawarada et al., 2017; Li et al.,
2023c; Wang et al., 2023c; Yang et al., 2017b; Zhang et al.,
2020). While homologs of ALYREF have been found in the plant
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genomes, their exact functions have not yet been confirmed.
Furthermore, a number of RNA m5C-related protein regulators,
such as the fragile X mental retardation protein (FMRP), Y box
protein 2 (YBX2), YTH domain-containing family protein 2
(YTHDF2), and Serine/arginine-rich splicing factor 2 (SRSF2)
were found to play crucial roles in a spectrum of biological
processes in animals, including DNA damage repair, liquid-liquid
phase separation (LLPS), and pre-rRNA processing (Dai et al.,
2020; Ma et al., 2023; Wang et al., 2022d; Yang et al., 2022b).
However, the protein homologs of these novel RNA m5C
regulators and their functional importance in plants remained
to be characterized.
In addition to m6A and m5C, other RNAmodifications found in

plants include N4-acetylcytosine (ac4C), pseudouridylation (ψ),
N1-methyladenosine (m1A), and Nicotinamide adenine dipho-
sphate (NAD+) 5′ end capping. While the precise functions of
these diverse RNA modifications are not yet fully understood,
studies have implicated their regulatory roles in a broad
spectrum of plant biological processes, including chloroplast
rRNA maturation, leaf development, seed germination, photo-
synthesis, ABA signaling, and stress responses (Chen and Witte,
2020; Pan et al., 2020; Wang et al., 2022f; Yang et al., 2020c;
Yu et al., 2021b). The transcriptomic distribution patterns (Sun
et al., 2019), writers (Xiao et al., 2023), erasers (Pan et al., 2020;
Yu et al., 2021b), and readers of these different RNA modifica-
tions, as well as their regulatory mechanisms are also under
investigation (Li et al., 2023a; Pan et al., 2020; Wang et al.,
2023d; Wang et al., 2019; Yu et al., 2021b; Zhang et al.,
2019c).

Regulation and modification of RNA poly(A) tails

The poly(A) tail is co-transcriptionally added to the 3′ end of
precursor RNA, representing a pivotal element in mRNA quality
control and translation efficiency (Passmore and Coller, 2022;
Weill et al., 2012). Recent advancements in sequencing methods
have significantly improved the measurement of poly(A) tail
length. These methods can be mainly grouped into the short-read
sequencing platforms-based methods, including TAIL-seq (Chang
et al., 2014), mTAIL-seq (Lim et al., 2016), PAL-seq (Subtelny et
al., 2014), PAT-seq (Harrison et al., 2015), Poly(A)-seq (Zhao et
al., 2019c) and TED-seq (Woo et al., 2018), and the long-read
sequencing platform-based methods such as FLAM-seq (Legnini
et al., 2019), PAIso-seq (Liu et al., 2019c), FLEP-seq (Jia et al.,
2020a; Long et al., 2021b), FLEP-seq2 (Jia et al., 2022), and
Nanopore direct RNA sequencing (DRS) (Parker et al., 2020;
Wang et al., 2024a). PAL-seq, for instance, has provided
insights, revealing that the poly(A) tail length in Arabidopsis
leaves is longer than that in yeast but shorter than that in
mammalian cells (Subtelny et al., 2014). The median poly(A) tail
length in various tissues of Arabidopsis and different plant species
ranges from 50 to 100 nt (Jia et al., 2022; Parker et al., 2020;
Subtelny et al., 2014). Notably, chloroplast and mitochondrial
transcripts have shorter poly(A) tails than nuclear transcripts,
with a median length of 13 nt in chloroplasts and 20 nt in
mitochondria (Parker et al., 2020). The distribution of poly(A)
tail length exhibited distinct phase peaks and tissue-specific
patterns in plants, with most Arabidopsis tissues peaking around
~20 and ~45 nt, which is the footprint of one or two cytoplasmic
poly(A) binding proteins (PABPC) (Jia et al., 2022). mRNA with
the most prolonged half-lives exhibited poly(A) tail length peak at

~45 nt, while the short-lived mRNA had few tails in the
corresponding range (Jia et al., 2022). Poly(A) tails in the
nucleus displayed longer tail lengths than those in the cytoplasm
(Jia et al., 2022), implying the rapid shortening of poly(A) tails
before mRNA stabilization in the cytoplasm. ONT-DRS of ddm1
and ccr4a ddm1 revealed that the poly(A) tail length of
transposon transcripts also showed ~25 nt internal peaks and
CCR4a was responsible for TE RNA stability (Wang et al.,
2024a). Additionally, the lengths of poly(A) tails in orthologous
genes remained relatively consistent among various plant
species, highlighting the evolutionarily conserved nature of
poly(A) tail length (Jia et al., 2022).
Beyond poly(A) tail length, the presence of non-adenosine

residues within poly(A) tails is widespread in Arabidopsis (Jia et
al., 2022; Scheer et al., 2021; Zhao et al., 2019c; Zuber et al.,
2016). Poly(A)-seq has revealed the presence of guanine in poly
(A) tails, showing a negative correlation with the PABP binding
efficiency in Arabidopsis genes (Zhao et al., 2019c). Both TAIL-
seq and PacBio-sequenced FLEP-seq2 libraries have revealed that
uridylation exhibits the highest frequency among all non-A
nucleotides, with a predominant occurrence in transcripts
featuring a poly(A) tail length of less than 20 nt (Jia et al.,
2022; Zuber et al., 2016). RNA uridylation was significantly
decreased in the urt1, indicating that URT1 functions as the main
terminal uridylyltransferases for uridylation (Sement et al.,
2013; Zuber et al., 2016). 3′-truncated transcripts were
accumulated in the urt1, as revealed by 3′ RACE, and transcripts
with short poly(A) tails were also accumulated in the urt1, as
shown by Nanopore direct RNA sequencing. Both findings
suggest that uridylation inhibited the 3′ trimming of oligo(A)-
tailed mRNAs (Scheer et al., 2021; Sement et al., 2013). In line
with this, in vitro biochemical experiments demonstrated that
uridylation delayed deadenylation (Zuber et al., 2016). Further-
more, LC-MS/MS analysis has revealed that URT1 is associated
with several translational repressors and decapping factors
(Scheer et al., 2021), indicating that uridylation promotes
mRNA degradation. These studies have significantly expanded
our understanding of poly(A) tail length dynamics and its
biological function in plants.

Epigenetic regulation of plant agronomic traits

Gametophyte development

Plant germline cells are differentiated from somatic cells, during
which a subepidermal cell differentiates into megaspore mother
cells (MMC) in the ovule and pollen mother cells (PMCs) in the
anther. Both local and large-scale chromatin epigenetic repro-
gramming of histone modifications and DNA methylation occurs
during germline cell development, and is critical for plant
reproduction (She and Baroux, 2015; She et al., 2013; Yang et
al., 2023d).
MMC specification requires precise regulation of DNA methy-

lation (Hernández-Lagana et al., 2016; Mendes et al., 2020;
Olmedo-Monfil et al., 2010; Qin et al., 2014; Zhao et al., 2018).
The level of CHH methylation (mCHH) is barely detectable at the
early MMC stage and gradually increases later during female
sporogenesis (Figure 1) (Ingouff et al., 2017). Mutations in the
RdDM components may lead to the formation of multiple MMCs
within an ovule (Hernández-Lagana et al., 2016; Olmedo-Monfil
et al., 2010). The mature female gametophyte contains two
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gametes: a haploid egg cell and a diploid central cell. Within the
central cell, the enrichment of mCG at genes and TEs is relatively
low due to the preferential expression of DME before fertilization
(Park et al., 2016; Schoft et al., 2011). In contrast, the level of
mCHG in the central cell is similar to that in the embryo, and the
mCHH level is higher (Figure 1) (Park et al., 2016). In rice, it has
been found that small RNAs migrate from the central cell into the
egg cell to guide de novo DNAmethylation (Erdmann et al., 2017;
Ibarra et al., 2012). Similar mechanisms may also exist in
Arabidopsis.
During Arabidopsis male gametophyte development, meio-

cytes that originate from PMCs are enveloped by the protective
nursery tapetum. The tapetum generates 24-nt siRNAs, which
are likely transported into the meiocytes through plasmodesma-
ta, guiding the male sexual-lineage-specific DNA methylation
(Long et al., 2021a; Walker et al., 2018; Zhou et al., 2018a).
Consequently, meiocytes, microspores, and sperm all exhibit high
levels of mCG and mCHG (Figure 1). However, mCHH levels are
low in these cells, possibly due to a genome-wide erasure of
mCHH during meiocyte differentiation (Calarco et al., 2012;
Walker et al., 2018). In contrast, the vegetative cell displays
lower levels of mCG and mCHG, as well as more decondensed
chromatin (Figure 1) (Jullien et al., 2012; Walker et al., 2018).
The loss of DNA methylation at TEs and DNA repeats in the
vegetative cell facilitates the production of 24-nt siRNAs (Calarco
et al., 2012; Schoft et al., 2011). These siRNAs are then
transported into sperm cells to direct DNAmethylation (Figure 1)
(Calarco et al., 2012; Martínez et al., 2016). Thus, the role of
companion cell-derived small RNAs in shaping the epigenetic
landscape of reproductive cells may be a conserved feature of
both male and female gametogenesis.
Interestingly, there is an overall high level of mCHH but a low

level of mCHG DNA methylation in rice sperm cells (Liu et al.,
2023b; Zhou et al., 2021b), which differs from the near complete
loss of mCHH observed in Arabidopsis sperm cells. These changes
in DNA methylation likely begin in the rice meristem long before
germ cell differentiation (Higo et al., 2020), and also depend on
DNA demethylase (Kim et al., 2019; Liu et al., 2018d; Zhou et al.,
2021b).
Histone modifications are also reprogrammed during male

gametogenesis. Male germlines exhibit a reduced level of
H3K27me3 (Borg et al., 2020; Zhu et al., 2023), likely due to
the combined effects of reduced PRC2 activity, increased
H3K27me3 demethylation activity, and the incorporation of
H3.10, a histone H3 variant that is resilient to H3K27me3 (Borg
et al., 2020). However, the loss of H3.10 does not affect the
overall H3K27me3 pattern in male gametes and does not cause
visible defects in male gametogenesis (Borg et al., 2020; Okada et
al., 2005; Zhu et al., 2023). One prominent feature of sperm
chromatin is the widespread presence of H3K27me3 and
H3K4me3 bivalency (Zhu et al., 2023). Whether this bivalency
results from cell heterogeneity or co-exists within a single cell
remains to be further characterized.

Fertilization and seed development

During double fertilization, one sperm fuses with the egg cell to
produce the embryo, and the other fertilizes the central cell to
produce the endosperm. Similar as in animals, upon fertilization,
the zygote transcriptome is dominated by maternally inherited
transcripts, including small RNA carried over from the egg cell

(Anderson et al., 2017; Li et al., 2022a; Liu et al., 2023b).
Meanwhile, zygotic genome activation (ZGA) occurs before the
first embryonic division, which is characterized by a widespread
redistribution of 24-nt sRNAs and a reconfiguration of the
paternal DNA methylation to match the maternal methylation
pattern (Anderson et al., 2017; Liu et al., 2023b). A continuous
increase in the level of mCHH has been observed during the
Arabidopsis early embryogenesis and seed development (Figure
1) (Bouyer et al., 2017; Jullien et al., 2012; Kawakatsu et al.,
2017; Moreno-Romero et al., 2019; Narsai et al., 2017; Walker
et al., 2018). At specific loci, allelic-specific methylation patterns
are also maintained throughout the development and contribute
to allelic-specific gene expression in the hybrids, which is related
to heterosis in rice (Ma et al., 2021; Shao et al., 2019).
Mutations of DNA demethylase affect the development of

embryo and endosperm, which stores nutrient and provides
support to the developing embryo (Jia et al., 2020b; Kim et al.,
2019; Liu et al., 2018d; Zhou et al., 2021b). In rice, it has been
demonstrated that grains of the Osros1 mutant develop a thicker
aleurone layer, which is rich in essential nutrients like proteins,
lipids, vitamins, and minerals (Liu et al., 2018d). This enhances
the nutritional contents and quality of rice grains. The maize
genome encodes four DNA demethylases, ZmROS1a/b/c/d (Gent
et al., 2022; Xu et al., 2022). Kernels of the double mutants are
either small (ZmROS1ab) or nonviable (ZmROS1bd) (Gent et al.,
2022). In addition, maize mutants with perturbed DNA
methylation, including ddm1 and cmt3, cannot produce viable
kernels due to arrested zygote development (Fu et al., 2018a; Li et
al., 2014b; Long et al., 2019).
Histone modifications also play a role in regulating plant

embryogenesis and seed development (Kim et al., 2019; Liu et al.,
2018d; Zhou et al., 2021b). In Arabidopsis, the maternal
chromatin of endosperm exhibits a higher enrichment of
H3K27me3, due to the maternal expression of PRC2 core
components, FIS2, and MEDEA (MEA) (Luo et al., 2000; Moreno-
Romero et al., 2016). Mutations in FIS2 and MEA lead to
autonomous endosperm development and the arrestment of
ovule development (Chaudhury et al., 1997; Kiyosue et al.,
1999; Luo et al., 2000). In rice, the maternally expressed
OsEMF2a is essential for endosperm cellularization and imprint-
ing (Cheng et al., 2021b; Tonosaki et al., 2021). Mutation in
another rice PRC2 component, OsFIE2, promotes asexual
embryo formation.
Other epigenetic modifications involved in endosperm devel-

opment include miRNAs and histone acetylation. (Hu et al.,
2021; Rossi et al., 2007; Song and Chen, 2015; Xu et al., 2023;
Yang et al., 2016; Zhang et al., 2022c; Zhou et al., 2021c).
Defects and/or altered expression of histone acetyltransfersaes
and HDACs lead to abnormal seed development and reduced
grain yield in rice and maize (Li et al., 2023b; Rossi et al., 2007;
Song and Chen, 2015; Yang et al., 2016). Such effects and
functional mechanisms may also be conserved in other Poaceae
crops, such as wheat (Zhao et al., 2024; Zhao et al., 2023b).

Vernalization and floral transition

The regulation of flowering time is crucial for plants to adapt to
seasonal changes. FLOWERING LOCUS T (FT), a prominent
florigen and its upstream regulator, FLOWERING LOCUS C (FLC),
are pivotal in this process (Corbesier et al., 2007; Jaeger and
Wigge, 2007; Luo and He, 2020; Luo et al., 2021). The
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expression of the FT gene is repressed by H3K27me3 during the
daytime and increases at dusk (Figure 2A). Two repressive
complexes LHP1-EMF1c (consists of LIKE HETEROCHROMATIN
PROTEIN 1, JMJ14, and EMBRYONIC FLOWER1) and BAH-
EMF1c (consists of EARLY BOLTING IN SHORT DAYS, SHORT
LIFE, and EMF1) recognize H3K27me3 and interact with the
CLF-PRC2 complex, which deposits H3K27me3 (Li et al., 2018b;
Wang et al., 2014a; Yang et al., 2018b). H3K4me3 methyl-
transferases, ATX1, along with the H3K4me3/H3K36me3
readers, MORF RELATED GENE 1 (MRG1) and MRG2, play a
role in enhancing the expression of the FT gene under long-day
conditions to promote flowering (Figure 2A) (Bu et al., 2014; Jing
et al., 2019; Xu et al., 2014).
FLC is a MADS-box transcription factor that represses the

expression of FT, thereby delaying the transition to flowering
(Gao and He, 2024; He et al., 2020). In winter annual plants,
FLC expression is promoted by the FRIGIDA super complex
(FRIsc), which consists of RNA polymerase II associated factor 1
(PAF1c), SWR1c, the nuclear pre-mRNA cap-binding complex
(CBC), histone 2B mono-ubiquitination (H2Bub1) enzymes UBC1
(UBIQUITIN-CONJUGATING ENZYME 1) and UBC2, HAM1/2,
and EFS (Figure 2B) (Li et al., 2018c; Luo and He, 2020; Xu et al.,
2022). High expression of FLC also promotes seed germination of
winter-annual plants in autumn (Chiang et al., 2009). The active
chromatin state of FLC is maintained during vegetative growth
until the plants are exposed to low temperatures.
During vernalization, FRIGIDA (FRI) forms condensates and

leads to decreased active histone modifications at FLC (Zhang et
al., 2023h; Zhu et al., 2021). Additionally, prolonged cold
exposure leads to the formation of VIN3-PRC2 complex and its
recruitment to the chromatin by VIVIPAROUS1/ABI3-LIKE
(VAL) 1 and VAL2, resulting in H3K27me3 deposition (Fran-
co-Echevarría et al., 2023; Li and Cui, 2016; Yuan et al., 2016;
Zhao et al., 2020). When the temperature returns to warmth,
VIN3 undergoes rapid degradation, and the VRN5-PRC2
complex works collectively with H3K27me3 readers EARLY
BOLTING IN SHORT DAY (EBS), SHORT LIFE (SHL), and LHP1 to
propagate and preserve H3K27me3 in maintaining a stable
Polycomb-repressed state over FLC (Gao et al., 2023; Yang et al.,
2017a) (Figure 2C).
The epigenetic modifications at FLC need to be reset in each

generation to ensure proper control of flowering time through
vernalization (Liu et al., 2024). While H3K27me3 reprogram-
ming occurs in sperm cells (Borg et al., 2020; Zhu et al., 2023),
the repressed state of FLC is retained in the egg cells, and passed
on to the early embryos (Luo and He, 2020; Luo et al., 2020b). In
early embryo development, the pioneer transcription factor
LEAFY COTYLEDON 1 (LEC1) binds to the distal FLC promoter,
creates an open chromatin for interaction with B3-domain
transcription factors LEC2, FUS3 (FUSCA 3), and ABI3 (ABSCI-
SIC ACID-INSENSITIVE 3), possibly followed by the disruption of
VAL1, VAL2, and Polycomb protein bindings (Tao et al., 2019;
Xu et al., 2022). As the embryo undergoes rapid cell divisions
during embryogenesis, H3K27me3, inherited maternally from

Figure 1. DNA methylation dynamics during plant reproductive development. The subepidermal cell in the ovule differentiates into MMC, while the anther meristem primordia
differentiate into PMC. The MMC produces the haploid egg cell and the diploid central cell, whereas the PMC generates two sperm cells and a vegetative cell. After double
fertilization, a diploid embryo and a triploid endosperm are produced. The levels of DNA methylation (mCG, mCHG, and mCHH) in various plant cells are represented by the size of
different shapes. Red arrows indicate that the siRNAs produced in nurse cells or companion cells guide DNA methylation in the reproductive cells. MMC, megaspore mother cell;
FM, functional megaspore; CC, central cell; EC, egg cell; PMC, pollen mother cell; TAP, tapetum; GC, generative cell; SC, sperm cell; VN, vegetative nuclear.
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the vernalized parent, gradually decreases, and the active
chromatin state is re-established through the recruitment of
the FRIsc complex by LEC2, FUS3, leading to the activation of
FLC (Tao et al., 2019; Xu et al., 2022).

Plant architecture

It has been proposed that the potential of crop yields can be
boosted through the development of plants with ideal plant
architecture (IPA), featuring optimal plant height, leaf inclina-
tion and size, tiller number, etc. for maximal photosynthetic
efficiency and energy conversion rate. In searching for IPA
quantitative trait locus (QTL), the OsSPL14 (SQUAMOSA
PROMOTER BINDING PROTEIN-LIKE 14) gene has been
identified (Jiao et al., 2011; Miura et al., 2010). A point mutation
in OsSPL14 disrupts the OsmiR156 binding site, resulting in an
‘ideal’ plant architecture with reduced tiller number, increased
lodging resistance, and enhanced grain yield. In addition, two
IPA epialleles, ipa1-2D and WFP, showing differential DNA
methylation among different rice cultivars were identified (Miura
et al., 2010; Zhang et al., 2017). In maize, disruption of ZMET2
(Zea methyltransferase2), responsible for genome-wide mCHG,
increased the number of husk leaves (Wang et al., 2024d). Knock
down of SET domain protein 128 (SDG128), a H3K4me3
methyltransferase, leads to increased leaf angles (Wang et al.,
2021d).
Besides being a key factor of crop photosynthesis rate, plant

architecture was also found to affect crop nutrient utilization

efficiency, thus offering an important strategy for optimizing crop
yield with minimal environmental impact. A genetic screen
aimed at increasing nitrogen utilization efficiency identified ngr5
mutation in rice (Wu et al., 2020). NITROGEN-MEDIATED
TILLER GROWTH RESPONSE 5 (NGR5), an APETALA2-domain
transcription factor induced by nitrogen, recruits PRC2 to
modulate H3K27me3 levels over several branching-inhibitory
genes. Increased expression of NGR5 promotes tillering without
nitrogen rich fertilizer.
Factors that affect root development directly influence nutrient

uptake. Reduced expression of ZmCHB101, the core subunit of
the SWI/SNF-type ATP-dependent chromatin remodeling com-
plex in maize, accelerates root growth and increases biomass
under low nitrate conditions (Meng et al., 2020). Mutation in
DDM1 leads to shortened and thickened roots, as well as
increased tolerance to low-Pi stress (Luo et al., 2023). In maize,
Pi deficiency also strongly induces the expression of miR399 (Du
et al., 2018; Wang et al., 2023e), a positive regulator of Pi
uptake. Overexpressing miR399 or knockout of its target
Phosphate 2 (ZmPHO2) leads to excessive accumulation of Pi
and apparent leaf senescence. Interestingly, ZmmiR399-guided
cleavage of ZmPHO2 is inhibited by RNAPILNCR1, a noncoding
RNA also induced under Pi deficiency, suggesting a finetuned
feedback regulation of low Pi responses in maize (Du et al., 2018).

Regeneration

Plant regeneration through tissue culture provides not only a

Figure 2. The regulation of FT and FLC expression mediated by histone modifications in plants. A, Transcriptional regulation of FT expression under long-day conditions. B,
Transcriptional regulation of FLC expression mediated by AuPC and FRIsc. C, Epigenetic regulation of FLC expression in response to seasonal changes in Arabidopsis winter
annuals.
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method for vegetative propagation, but also the groundwork for
plant improvements through transformation and genetic en-
gineering (Ikeuchi et al., 2019). Using Arabidopsis regeneration
as an example, the typical procedure involves callus induction,
followed by either shoot or root organogenesis in medium
containing proper types and concentrations of phytohormones.
Studies in Arabidopsis offered mechanistic insights into the
transdifferentiation process of callus induction, revealing its
similarity with lateral root formation (Atta et al., 2009; Che et
al., 2007; Fan et al., 2012; He et al., 2012; Sugimoto et al.,
2011; Sugimoto et al., 2010).
Cell fate transition guided by the epigenetic reprogramming

constitutes a key theme during callus formation (Li et al., 2024a;
Wu et al., 2022). For example, H3K27me3 levels are upregulated
at many leaf-related genes and downregulated at many root-
related genes, leading to the transition from leaf to root cell
identity (He et al., 2012). HISTONE THREE RELATED 15
(H3.15), an atypical histone variant, promotes pluripotency by
removing the H3K27me3 (Yan et al., 2020). HISTONE
ACETYLTRANSFERASE1 (HAG1) primes transcriptional activa-
tion of several root identity genes includingWUSCHEL-RELATED
HOMEOBOX5 (WOX5), SCARECROW (SCR), and PLETHORA1
(PLT1) (Kim et al., 2018). Mutation in ARABIDOPSIS TRITHOR-
AX4 (ATX4) results in reduced shooting capacity due to
compromised H3K4me3 deposition at shoot identity genes (Lee
et al., 2019).
Understanding the epigenetic programing involved in plant

regeneration offers us possible strategies to overcome the genetic
and epigenetic constraints that limit plant regeneration and
transformation efficiency (Chen et al., 2024). It has been shown
that overexpression of certain morphogenic regulators, such as
WUSCHEL (WUS), BABY BOOM (BBM), and WOX5, promotes
shoot regeneration in both Arabidopsis and wheat (Wang et al.,
2022c; Zhai and Xu, 2021; Zhou et al., 2024). Similarly, DNA
BINDING WITH ONE FINGER (DOF) enhances shoot regenera-
tion in wheat tissue culture (Liu et al., 2023d). Based on these
knowledge, CRISPR-activation (CRISPR-a) tools have also been
developed for targeted activation of endogenous morphogenic
regulators (Pan et al., 2022; Zhang et al., 2024). These tools
have successfully accelerated plant regeneration in various
economically significant plant species such as poplar, alfalfa,
sheepgrass, and woodland strawberry (Pan et al., 2022; Zhang et
al., 2024). We envision that continued advancements in
epigenetic modifications through CRISPR-Cas9 may offer a new
venue to a more efficient plant and crop tissue culture system in
the future.

Fruit ripening

Ripening directly determines fruit quality and economic values.
In tomatoes, a genome-wide investigation at four fruit develop-
mental stages reveals that DNA methylation continuously
decreases throughout maturation (Table 1) (Zhong et al.,
2013). SlDML2, encoding one of the four DEMETER-like DNA
demethylases in tomatoes, is highly expressed in fruit and
exhibits ripening related expression (Liu et al., 2015). Silencing
or knocking out of SlDML2 delays ripening (Lang et al., 2017; Liu
et al., 2015). SlDML2 transcripts are also regulated by RNA
modification. SlALKBH2 removes m6A from and destabilizes
SlDML2 transcripts. Knocking out of SlALKBH2 delays ripening,
further implying the intricate interplay between DNA methyla-

tion and m6A modification on RNA (Zhou et al., 2019).
Histone modifications are also implicated in fruit ripening.

SlHDA3 and SlHDA1, histone deacetylases belonging to the
RPD3/HDA1 subfamily, repress genes in cell wall metabolism
and thus delay fruit softening (Guo et al., 2018a; Guo et al.,
2017b). Conversely, SlHDT3, a histone deacetylase, promotes
softening through modulating ethylene biosynthesis and car-
otnoid accumulation (Guo et al., 2017a). H3K27me3 and
H3K4me3 have also been implicated in the regulation of fruit
ripening. For example, overexpression of SlMSI1 (a PRC2
component) or SlLHP1b inhibits ripening (Liang et al., 2020;
Liu et al., 2016), while overexpression of SlJMJ6 promotes
ripening through H3K27me3 demethylation (Li et al., 2020b).
Removal of H3K4me3 by SlJMJ7 inhibits ethylene biosynthetic
genes and ripening promoting transcription factors and thus
delays ripening (Ding et al., 2022). Finally, it is worth
mentioning that ncRNAs are involved in ripening (Gao et al.,
2015; Tan et al., 2017; Zhu et al., 2015). A recent review
covered over 40 non-coding RNAs and their roles in ethylene
biosynthesis, color, taste, and texture during tomato ripening
(Ma et al., 2020).

Fruit coloration

Fruit ripening is often associated with changes in color as a result
of anthocyanin biosynthesis. Several studies suggest that DNA
methylation is involved in fruit coloration. In peach, low
methylation within promoters of anthocyanin biosynthesis genes
leads to increased transcription at low temperatures. Consis-
tently, chemical inhibition of DNA methylation induces sig-
nificant accumulation of anthocyanin, indicating that DNA
demethylation is crucial in temperature dependent accumulation
of anthocyanin post-harvest (Zhu et al., 2020). In European pear,
expression of a transcriptional factor PcMYB10 is repressed by
DNA methylation in the promoter. PcMYB10 activates the
transcription of PcUFGT, which encodes a key enzyme in
anthocyanin biosynthesis. Therefore, methylation of PcMYB10
promoter indirectly leads to green skinned sports (Wang et al.,
2013). In radish, white-fleshed epi-mutants are generated due to
a hypermethylated CACTA transposon inserted into the promo-
ter of RsMYB1, leading to its silencing and the inhibition of
anthocyanin accumulation (Wang et al., 2020b). Sweet oranges
undergo global gain of DNA methylation during ripening, which
is associated with decreased expression of four DNA demethylase
genes. Chemical inhibition of DNA methylation represses the
coloration of the skin (Huang et al., 2019). In Vitis vinifera, the
levels of DNA methylation in veraison stage are relatively higher
than those in green and mature fruits, and decreased DNA
methylation in 3′ LTR of the retrotransposon is associated with
an accumulation of anthocyanin in the fruit (Azuma and
Kobayashi, 2022; Shangguan et al., 2020). Similarly in apple,
genes involved in anthocyanin pathway, such as ANTHOCYA-
NIDIN SYNTHASE (ANS) and FLAVONE 3β-DYHDROXYLASE
(F3H), are differentially methylated and differentially expressed
between deep-red-skinned and lighter-skinned apple fruits
(Azuma and Kobayashi, 2022; Jiang et al., 2019).

Plant immunity

To defend against the infection of diverse microbial pathogens,
plants have developed sophisticated immune mechanisms. A
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variety of epigenetic mechanisms, including DNA methylation,
histone modifications, and chromatin remodeling have been
shown to participate in plant defense against pathogens, and
function as positive or negative regulators of plant immunity
(Table 2) (Lee et al., 2016; Li et al., 2020a; Roy et al., 2018; Xie
et al., 2023b). For example, upon infection by Pseudomonas
syringae pv. tomato strain DC3000 (Pto DC3000), ROS1 functions
to derepress RdDM targets, and restricts bacterial propagation
within xylem vessels. In this example, ROS1 functions as a
positive regulator of plant defense through DNA demethylation of
the disease resistant genes, RESISTANCE TO METHYLATED
GENE 1 (RMG1) (Figure 3A) (Yu et al., 2013). In another case,
JMJ28 recruits the ATX1/2-COMPASS complex to chromatin for
H3K4 methylation deposition and functions as a negative
regulator of plant immunity (Xie et al., 2023b). Several
chromatin remodelers (such as SWP73A/BAF60, CHR5,
DDM1, and SYD) have been revealed in maintaining the
homeostasis of NOD-like immune receptors (NLRs), such as
SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), to prevent

autoimmune responses (Figure 3B) (Huang et al., 2021a;
Johnson et al., 2015; Li et al., 2010; Yang et al., 2023c; Zou et
al., 2017).
The regulation of plant defense genes by epigenetic regulators

can be either direct or indirect (Lee et al., 2016). For example,
through chromatin immunoprecipitation (ChIP) assay,WRKY70
was found to be a direct target of H3K4me3 methyltransferase
ATX1, while PR1 and THI2.1 appeared to be secondary targets
(Alvarez-Venegas et al., 2007). Adding to the complexity, it has
been shown that epigenetic regulators can impose multiple layers
of epigenetic modifications in regulating plant defense. For
example, in Arabidopsis sdg8 and sdg25mutants, not only H3K4
and H3K36 histone lysine methylations were reduced over two
defense genes, CAROTENOID ISOMERASE2 (CCR2) and ECER-
IFERUM3 (CER3), H2B ubiquitination was also impaired at
these two loci, suggesting a cross talk between different types of
histone modifications in regulating plant immunity (Lee et al.,
2016).
Plants mainly utilize two complementary signaling pathways,

Table 1. Epigenetic regulations involved in fruit development

Crops Traits/changes induced Phenotype Epigenetic modification References

Tomato

DNA methylation levels decrease continuously as the fruit matures Ripening DNA methylation (Zhong et al., 2013)

Decreases in DNA methylation are associated with not only
hundreds of ripening-induced genes but also many ripening-

repressed genes
Ripening DNA methylation (Lang et al., 2017)

Silencing or knocking out SlDML2 (DEMETER-like DNA demethy-
lases) delays ripening Ripening DNA methylation (Lang et al., 2017; Liu et al.,

2015)

SlALKBH2 regulates m6A demethylation levels and subsequently
impacts mRNA stability of SlDML2; knocking out SlALKBH2 delays

ripening
Ripening mRNA methylation

&DNA methylation (Zhou et al., 2019)

SlHDA3 and SlHDA1 negatively regulate fruit softening, SlHDT3
acts as a positive regulator by activating similar genes Ripening Histone modification (Guo et al., 2017a; Guo et al.,

2018a; Guo et al., 2017b)

Overexpression of SlMSL1 inhibits the expression of the ripening
related genes and displays enlarged sepals and non-ripening fruits Ripening Histone modification (Liu et al., 2016)

SlLHP1b attaches to the H3K27me mark within ripening-
associated chromatin regions, affecting ripening-related ethylene
biosynthesis, carotenoid biosynthesis, and RIN targeted genes, and

suppressing fruit ripening

Ripening Histone modification (Liang et al., 2020)

Overexpression of histone lysine H3K27 demethylase SlJMJ6
accelerates the fruit ripening process Ripening Histone modification (Li et al., 2020b)

H3K4 demethylase SlJMJ7 may affect fruit ripening by regulating
the expression of ethylene biosynthesis genes and ripening related

transcription factor genes through H3K4me3 demethylation
Ripening Histone modification (Ding et al., 2022)

Over 40 non-coding RNAs are associated with the ethylene
pathway, color, taste, and texture during tomato ripening Ripening Non-coding (Ma et al., 2020)

Peach DNA demethylation is crucial in temperature dependent accumu-
lation of anthocyanin post-harvest Coloration DNA methylation (Zhu et al., 2020)

Pear Methylation of PcMYB10 promoter indirectly leads to green
skinned sports Coloration DNA methylation (Wang et al., 2013)

Radish

White-fleshed epi-mutants are generated because a hypermethy-
lated CACTA transposon is inserted into the promoter of RsMYB1,

leading to its silencing and the inhibition of anthocyanin
accumulation

Coloration DNA methylation (Wang et al., 2020b)

Oranges Chemical inhibition of DNA methylation represses the coloration of
the skin Coloration DNA methylation (Huang et al., 2019)

Vitis vinifera

The levels of DNA methylation in veraison stage are relatively
higher than those in green and mature fruits, and decreased DNA
methylation in 3′LTR of the retrotransposon is associated with an

accumulation of anthocyanin in the fruit

Coloration DNA methylation (Azuma and Kobayashi, 2022;
Shangguan et al., 2020)

Apple
ANS and F3H are differentially methylated and differentially
expressed between deep-red-skinned and lighter-skinned apple

fruits
Coloration DNA methylation (Azuma and Kobayashi, 2022;

Jiang et al., 2019)
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the jasmonate (JA) and salicylic acid (SA) pathways, to defend
themselves against necrotrophic and biotrophic pathogens,
respectively. Epigenetic regulators function to regulate the
balance between these two pathways (Figure 3C). Under normal
growth condition, JAZ, TOPLESS (TPL), and NINJA (NOVEL
INTERACTOR OF JAZ) constitute a repressor complex that
suppresses the expression of JA-responsive genes (Zhang et al.,
2017). The interaction between TPL and NINJA is enhanced by
GENERAL CONTROL NON-DEREPRESSIBLE 5 (GCN5), which
directly acetylates TPL (An et al., 2022). Additionally, HDA6
counteracts the function of GCN5 through TPL deacetylation,
which weakens TPL-NINJA interaction and allows for transcrip-
tional activation of JA-responsive genes (An et al., 2022). As for
SA signaling pathway, HAC1 and HAC5 form complexes with
NONEXPRESSOR OF PATHOGENESIS RELATED GENES 1
(NPR1) and TGACG-BINDING FACTOR (TGA) in mediating SA-

triggered immunity through activation of pathogenesis-related
genes (PR genes) (Jin et al., 2018) (Figure 3C).
In plants, defense priming refers to a physiological process by

which a plant prepares itself for a much faster and stronger
immune response when the same type of pathogenic attack
reoccurs. It has been shown that the activation of plant defense
genes was repressed in the hac1 mutant, indicating the
contribution of histone acetylation to defense priming (Singh et
al., 2014a) (Figure 3D). In contrast, histone chaperone
CHROMATIN ASSEMBLY FACTOR 1 (CAF-1) is required for
maintaining defense genes in a repressed state (Mozgová et al.,
2015). In the caf1 mutant, the SA-dependent defense response is
spuriously activated under non-inductive conditions, resembling
the primed condition. In addition, DNA methylation pathways
were also found to regulate the priming of plant defense genes
(Lee et al., 2023; Luna and Ton, 2012).

Table 2. Epigenetic regulators involved in plant immunity

Plants Pathogens Epigenetic regulators Epigenetic modifications Defense genes References

Arabidopsis

Pst DC3000

RdDM, ROS1 DNA methylation SA mediated defense responses,
Resistance Methylated Gene 1 (RMG1)

(Yu et al., 2013)

RdDM – – (Luna and Ton, 2012)

DDM1 – GPK1 (GLYOXYSOMAL
PROTEIN KINASE 1)

(Lee et al., 2023)

CAF-1 Chaperone H3K4me3 SA mediated defense responses (Mozgová et al., 2015)

JMJ14 H3K4 methylation SNI1 (SUPPRESSOR OF NPR1-1
INDUCIBLE 1)

(Lee et al., 2016;
Li et al., 2020a)

FLD, LDL1, LDL2 H3K4me3 WRKY transcription factors
(Banday and Nandi, 2018;
Noh et al., 2021; Singh et

al., 2014b)

LHP1 H3K27me3 MYC2
(Ramirez-Prado et al.,

2019)

JMJ27 H3K9me2 PR (PATHOGENESIS RELATED) genes (Dutta et al., 2017)

ATX1 H3K4me3 WRKY70
(Alvarez-Venegas et al.,

2007)

GCN5 H3K14Ac SA-responsive defense genes (Kim et al., 2020)

SUVH4/5/6 H3K9me2 PRR (PATTERN RECOGNITION
RECEPTORS), NLR (Cambiagno et al., 2021)

HAC1, HAC5 Histone Acetylation NPR1, TGA, PR genes (Jin et al., 2018)

SWP73A/BAF60 Nucleosome organization SNC1 (Huang et al., 2021a)

CHR5, DDM1, SYD – –
(Yang et al., 2023c; Zou et
al., 2017, Li et al., 2010,
Johnson et al., 2015)

HDA6 Histone acetylation
CBP60g (CALMODULIN BINDING
PROTEIN 60g), SARD1 (SYSTEMIC

ACQUIRED RESISTANCE DEFICIENT 1)
(Wu et al., 2021)

Verticillium dahlia,
Botrytis cinerea

JMJ28, ATX1/2-COMPASS H3K4 methylation – (Xie et al., 2023b)

Botrytis cinerea, Pst DC3000 MEA H3K27me3 RPS2 (RESISTANCE TO P.SYRINGAE2) (Roy et al., 2018)

Bacterial pathogens, insects – Histone Acetylation JA-responsive genes (Zhang et al., 2017)

Botrytis cinerea GCN5, HDA6 Histone Acetylation TPL, NINJA, MYC2 target genes (An et al., 2022)

Necrotrophic fungal
pathogens HUB1, HUB2 H2Bub1 SNC1

(Dhawan et al., 2009; Yang
et al., 2023c; Zou et al.,

2014)

Sclerotinia sclerotiorum SWR1 H2A.Z, H3K4me3 YDD (YODA DOWNSTREAM) (Cai et al., 2021)

Rice
Blast fungus RdDM DNA methylation Pigm locus (Deng et al., 2017)

Magnaporthe oryzae lsiR76113 – CNGC5 (Zheng et al., 2024)

Maize
Fusarium graminearum – H3K27me3, H3K9me3,

H3K4me3, DNA methylation qRfg1 (Wang et al., 2017)

Southern leaf blight ZmAGO18b – – (Dai et al., 2023)

Pepper Ralstonia solanacearum CaSWC4 Histone modification – (Cai et al., 2021)
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In addition, plants and pathogens both utilize small RNA
silencing machinery as a weapon to defend each other (Boccara
et al., 2014; Deng et al., 2018; González et al., 2015; Li et al.,
2012; Lopez-Gomollon and Baulcombe, 2022; Shivaprasad et al.,
2012a; Zhai et al., 2011). These small RNAs were found to
translocate in-between the pathogens and host plants, a
phenomenon known as trans-kingdom RNAi (Liu et al.,
2023c) (Figure 4). The trans-kingdom regulation by small RNAs
is bidirectional, referred to as host-induced gene silencing (HIGS)
and pathogen-induced gene silencing (PIGS), respectively (Cai et
al., 2018; Weiberg et al., 2013). For instance, plants can deliver
miR159 and miR166 to the pathogenic fungus Verticillium
dahliae to silence fungal virulence genes, thereby antagonizing
fungal infection (Zhang et al., 2016c). Meanwhile, pathogens
can produce a type of protein known as the suppressor of trans-
kingdom RNAi (STR), which translocates into the plant nucleus,
and prevents the nuclear export of the miRNA-AGO1 complex
and the accumulation of mobile miRNAs (Hou et al., 2019; Qiao

et al., 2013; Zhu et al., 2022). Additionally, viruses have evolved
viral suppressors of RNA silencing (VSRs) to counteract the plant
RNA silencing pathways at various stages (Duan et al., 2012;
Lopez-Gomollon and Baulcombe, 2022).
Gibberella stalk rot in maize is a devastating disease caused by

Fusarium graminearum. The gene ZmCCT was identified as a
quantitative locus that confers resistance in maize (Wang et al.,
2017). The insertion of polymorphic CACTA-like transposon
upstream of ZmCCT attracts DNA methylation, and causes
ZmCCT transcriptional silencing and disease susceptibility (Wang
et al., 2017). Besides epigenetic modification in cis, crops can also
respond to pathogen infection through small RNA pathways. For
example, maize ZmAGO18b was found to negatively regulate
southern leaf blight (Dai et al., 2023). In rice, long small RNA
(lsiR76113) is downregulated by rice blast fungus (Magnaporthe
oryzae) infection, leading to an increased expression of its
targeting gene CNGC5 and enhanced disease resistance (Zheng
et al., 2024). In crops, there is often a trade-off between the

Figure 3. Chromatin-based regulation of plant immunity. A, Effects of DNA methylation and TE insertion on defense gene expression. B, Chromatin remodeler-mediated
regulation of the homeostasis of NLR immune receptors. C, Histone acetylation and defense immune signaling. D, A working model of epigenetic regulation of defense priming and
memory.
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disease resistance and yield. A recent study has discovered that
the resistance (R) genes of the rice Pigm locus are epigenetically
regulated in an organ specific manner, allowing tissue specific
defense response against Magnaporthe oryzae infection without
causing yield penalty (Deng et al., 2017). This result suggests a
novel strategy for developing disease resistant crops by modulat-
ing the expression of disease resistant genes in a tissue specific
manner.

Nodulation

Microbes can form symbiotic relationships with crops. One
notable example is the fixation of atmospheric nitrogen through
the symbiotic relationship between legumes and nitrogen-fixing
rhizobia, which not only has ecological significance but also is
pivotal for sustainable agricultural production.
In Medicago truncatula, reducing the activity of DME leads to

hypermethylation and the subsequent down-regulation of
nodulation differentiation genes, resulting in pronounced nodule
developmental defects (Satgé et al., 2016). In addition, extensive
research has highlighted the role of non-coding RNAs, particu-
larly small RNAs, in regulating nodule development (Hoang et
al., 2020). For instance, Gm-miR4416, a miRNA specific to
soybean, targets rhizobium-induced peroxidase (RIP1)-like per-
oxidase genes to regulate nodule number (Yan et al., 2016).
As small RNAs are mobile between microbe and its host plant

and within the plant itself, the regulation of nodulation can occur
through both local trans-kingdom interactions or through
systemic mechanism known as autoregulation of nodulation
(AON) (Caetano-Anollés and Gresshoff, 1991). For example, it
has been shown that small RNAs derived from rhizobial tRNA

fragments hijack soybean AGO1b to target soybean genes
involved in root hair development, and thereby promote
nodulation by root hair deformation (Ren et al., 2019). In the
case of AON, Clavata3-like (CLE) peptides are produced in roots in
response to rhizobia infection and travel to the shoot to
negatively regulate miR2111 biosynthesis. miR2111 is then
translocated back to the root, where it suppresses the root-
expressed receptor kinase “Too Much Love (TML)”, a negative
regulator of nodule formation (Tsikou et al., 2018; Zhang et al.,
2021b).
Moreover, evolutionarily conserved miRNAs exhibit species-

specific functions in soybean nodulation. For instance, while
Arabidopsis miR172 targets the AP2 (APETALA2) transcription
factors to regulate floral transition and flower development
(Chen, 2004), the soybean miRNA172c not only targets the
shoot-derived transcriptional repressor GmTOE4a to promote FT
expression and flowering (Zhao et al., 2015), but also targets
transcription factor Nodule Number Control1 (NNC1), activating
the early nodulin gene ENOD40 to promote nodule primordium
formation (Wang et al., 2014b). The dual function of
miRNA172c also suggests a connection between nodulation
and flowering. Supporting this notion, it has been observed that
in soybeans, the formation of nodules escalates during vegetative
growth and peaks during the flowering stage (Yun et al., 2023).

Heat stress

Temperature is a major environmental factor determining crop
yield and distribution. The ability of crops to properly and
efficiently respond to extreme temperatures, including both heat
and cold, is a key trait for crop breeding. Heat stress induces

Figure 4. Small RNA-mediated viral and non-viral plant immunity. STR, suppressor of trans-kingdom RNAi. Tk-sRNA, trans-kingdom sRNA. RDR, RNA-dependent RNA
polymerase.
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global epigenetic changes in chromatin, including alterations in
DNA methylation, histone modification, and chromosomal
interactions (Table 3) (Li et al., 2021a; Ma et al., 2018; Niu et
al., 2022; Sun et al., 2020a; Yang et al., 2023b). These changes
can lead to the disruption of heterochromatin and the reactiva-
tion of TEs, thereby causing genome instability (Ito et al., 2011;
Liang et al., 2021). Under heat stress, the repression of the
ONSEN retrotransposon requires mCHH methylation (Liu et al.,
2021b), whereas the repression of pericentromeric Gypsy
elements requires the linker histone H1. Intriguingly, the loss
of DNA methylation enhances heat tolerance, and this effect is
further amplified by the loss of H1 (Liu et al., 2021b). These
results suggest that TE reactivation under heat stress should not
be simply viewed as the damaging consequence, but also as a
survival strategy that aids in plant adaptation to heat stress. The
observation that Arabidopsis mutants lacking CMT2 also exhibit
increased heat stress tolerance further supports this notion (Shen
et al., 2014). However, the physiological significance of DNA
methylation in heat tolerance appears to be complex, as defects in
the RdDM pathway lead to hypersensitivity to heat stress (Popova
et al., 2013).
To prepare for the upcoming heat stress, plants have evolved

priming strategies, which involve epigenetic modifications at
heat response genes (Oberkofler et al., 2021; Zhao et al., 2019d).
For example, when plants experience heat, pre-existing
H3K4me2 and H3K4me3 persist on heat-shock genes, which
likely depends on a slower turnover rate of the histone variant
H3.3 (Liu et al., 2018c; Pratx et al., 2023). Heat stress priming
also involves JMJ-mediated demethylation of H3K27me3 at heat
shock protein (HSP) genes, such as HSP22 and HSP17.6C
(Yamaguchi et al., 2021). FORGETTER1 (FGT1) is a PHD domain
protein that directly interacts with chromatin remodeling
proteins. FGT1 has been found to mediate heat stress memory
through the alteration of nucleosome positioning (Brzezinka et
al., 2016).
It is evident that the impact of heat on epigenetic changes

exhibits locus-specificity. However, how this specificity is
achieved remains an open question. One possible mechanism to
ensure target specificity is through the function of small RNAs,
particularly microRNAs, which are key players in plant heat
responses (Zuo et al., 2021). For instance, heat induces miR160,
whose overexpression in Arabidopsis enhances seed germination
and seedling survival under heat stress (Lin et al., 2018). Other
miRNAs involved in heat tolerance include miR398 and miR156
(Fang et al., 2019; Guan et al., 2013; Stief et al., 2014).
Additionally, small RNAs can also mediate heat memory (Zuo et
al., 2021). An example is the reduced production of tasiRNAs
from the TAS1 and TAS2 genes in the heat-stressed Arabidopsis
plants and their unstressed offsprings (Liu et al., 2019b). This
reduction in tasiRNA accumulation leads to an increased
accumulation of its downstream target, the HEAT-INDUCED
TAS1 TARGET (HTT) genes, which contributes to enhanced
thermotolerance (Li et al., 2014c).
The function of tasiRNA in mediating transgenerational heat

memory is further regulated by histone modifications (Liu et al.,
2019b). Specifically, HEAT SHOCK TRANSCRIPTION FACTOR
A2 (HSFA2) directly activates Relative of Early Flowering (REF6)
expression, which in turn, further activates HSFA2 expression by
removing H3K27me3, forming a feedback loop. This loop
maintains the expression of an E3 ubiquitin ligase SGIP1, to
ensure SUPRESSOR OF GENE SILENCING (SGS3) degradation in

progeny cells (Liu et al., 2019b). SGS3 is required for the
biogenesis of tasiRNAs, which target positive regulators of heat
tolerance (Li et al., 2014c).
In crops, small RNAs were also found to regulate the balance

between heat tolerance and other agronomic traits, such as
disease resistance and nutrient assimilation. For example,
tasiRNA-ARFs negatively regulate Auxin Response Factors
(ARFs), which coordinate the balance between heat tolerance
and disease resistance at vegetative stage (Gu et al., 2023).
Moderate attenuation of this tasiRNAs-ARFs regulon, as a result
of weak ago7mutation, leads to high temperature induced female
sterility. Introduction of this ago7 allele to restorer lines can
endow fully mechanized hybrid rice breeding (Li et al., 2022b).

Cold stress

Cold resistance in plants involves various epigenetic regulations
at both DNA and histone levels. Variation in DNAmethylation at
the promoter of INDUCER OF CBF EXPRESSION 1 (ICE1), a
central regulator in cold responses, is correlated with phenotypic
variations in freezing tolerance observed in Arabidopsis acces-
sions from different latitudes (Xie et al., 2019). Consistently,
treatment with DNA methylation inhibitors or loss of DRM2
enhances freezing tolerance (Xie et al., 2019). DNA methylation
at the promoter of ALLANTOINASE (ALN), which encodes a
negative regulator of dormancy, is stimulated by cold in a tissue-
specific manner through non-canonical RdDM, leading to seed
dormancy (Iwasaki et al., 2019). In rubber tree Hevea brasiliensis,
prolonged cold treatment induces DNA hypomethylation at
promoters of cold responsive genes including HbICE1 and
HbCBF2 (Tang et al., 2018).
In addition, histone modifications have also been implicated in

cold stress responses in crops (Kamble, 2024; Qi et al., 2023; Sun
et al., 2024b). Cold induces histone acetylation through HOS15
mediated HD2C degradation (Park et al., 2018). In banana, cold
induces histone acetylation at the promoters of fatty acid
desaturases (FADs), which increase the production of unsatu-
rated fatty acids to maintain membrane integrity (Song et al.,
2019). Consistently, HDA6 is required for cold acclimation and
freezing tolerance in Arabidopsis (To et al., 2011).
The role of noncoding RNAs in cold stress responses is less

explored despite of being crucial. For instance, the lncRNA
SVALKA represses C-REPEAT BINDING FACTOR (CBF) 1
expression, and its knockout enhances cell survival under
freezing stress after acclimation (Kindgren et al., 2018). More-
over, cold-responsive miRNAs also have been identified and
miR169 confers cold tolerance by regulating auxin biosynthesis
(Aslam et al., 2020). Recent studies show that AGO1d, induced
at low temperatures, mediates the production of reproductive
phasiRNAs to maintain male fertility at low temperatures in rice
(Shi et al., 2022; Si et al., 2023; Tamotsu et al., 2023).

Drought stress

Under drought condition, dehydration-responsive genes exhibit
altered expression, which is associated with changes in different
histone modifications (Shi et al., 2023). For example, while
H3K4me3 abundance exhibits dynamic changes at dehydration-
responsive genes, levels of H3K4me2 and H3K4me1 remain
relatively stable (van Dijk et al., 2010). As proposed in the above
sessions, stress induced changes in epigenetic modifications
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Table 3. Epigenetic regulators involved in abiotic stresses

Plant species Stress Epigenetic modification Epigenetic regulator Target References

Maize

Nitrogen deficiency H3K27me3 PRC2 complex – (Meng et al., 2020)

Phosphate deficiency
DNA methylation DDM1 – (Luo et al., 2023)

miRNA miR399 – (Wang et al., 2023e)

Arabidopsis

Heat stress

DNA methylation CHH methylation/RdDM ONSEN (Liu et al., 2021b)

DNA methylation CMT2 – (Shen et al., 2014)

Nucleosome organization FGT1 – (Brzezinka et al., 2016)

miRNAs miR160/398/156 – (Lin et al., 2018; Fang et al.,
2019; Guan et al., 2013)

DNA methylation NRPD2 – (Popova et al., 2013)

H3K27me3 JUMONJI HSP22 and HSP17.6C (Yamaguchi et al., 2021)

Heat stress memory H3K27me3 REF6 SGIP1 (Liu et al., 2019b)

Cold dependent dormancy DNA methylation Non-canonical RdDM ALN (Iwasaki et al., 2019)

Cold acclimation lncRNA SVALKA CBF1 (Kindgren et al., 2018)

Drought stress

H3K4me3 ATX1 ABA biosynthesis gene, NCED3 (Ding et al., 2011a)

H3K4me3 ATX4, ATX5 AHG3 (Liu et al., 2018e)

H3K4me3 AtBRCA1 ROS homeostasis (Wang et al., 2020a)

H3K27me3 LHP1 ANAC055 (Fu et al., 2018b)

Histone deacetylation PWR, HDA9, ABI4 complex ABA pathway (Khan et al., 2020)

Nucleosome dynamics BRAHMA ABI5 (Han et al., 2012)

Drought stress memory

H3K4me3 and
H3K27me3 – – (Liu et al., 2014a)

H3K4me3 and H3K9ac – Drought-responsive genes, including
RD29A and RD29B

(Ding et al., 2012;
Kim et al., 2012)

Transgenerational drought
memory DNA methylation – – (Van Dooren et al., 2020)

Salt stress

miRNAs miR172 IDS1 (INDETERMINATE SPIKELET1) (Cheng et al., 2021a)

Histone acetylation GCN5 Cell wall biosynthesis genes (Zheng et al., 2019a)

Histone deacetylation HDA4/14/15/18 – (Ueda et al., 2017; Ueda et al.,
2019)

Histone deacetylation HDA19 ANAC019, P5CS1, LEA4 (Ueda et al., 2017)

Histone deacetylation HD2C ABI1, ABI2, AtERF4 (Luo et al., 2012)

sRNA RDR2 mediated HKT1 (Baek et al., 2010)

Cotton Heat stress DNA methylation – – (Ma et al., 2018)

Pepper

Heat stress Histone modification CaSWC4 – (Zhang et al., 2023g)

Heat stress memory H3K4me2/3 – – (Yamaguchi et al., 2021)

Transgenerational heat
memory tasiRNAs TAS1, TAS2 HTT (Li et al., 2014c)

Heat stress and pathogen
response balance tasiRNAs ARFs – (Gu et al., 2023)

Cold stress

DNA methylation – ICE1 (Xie et al., 2019)

Histone acetylation HOS15 mediated HD2C degradation – (Park et al., 2018)

miRNAs miR169 Auxin biosynthetic genes (Aslam et al., 2020)

H3K4me3 JMJ17 OST1 (OPEN STOMATA) etc (Huang et al., 2019)

Potato Cold stress H3K4me3/H3K27me3 – – (Guo et al., 2023b; Zeng et al.,
2019)

Rubber tree Cold stress DNA methylation – Cold responsive genes including
HbICE1, HbCBF2

(Tang et al., 2018)

Banana Cold stress Histone acetylation – FADs (Song et al., 2019)

Wheat Salt stress DNA methylation – TaHKT2;1, TaHKT2;3 (Kumar et al., 2017)

Rice Fertility at low temperature

sRNA AGO1d mediated production of pha-
siRNA – (Shi et al., 2022; Si et al.,

2023; Tamotsu et al., 2023)

H3K4 methylaiton SDG721 OsHKT1;5 (Liu et al., 2021c)

Histone deacetylation HDAC10 OsHKT2;1 –
Histone deacetylation OsHDA706 OsPP2C49 (Liu et al., 2023a)

H3K4me3 SNAC1-OsERF103-OsSDG705 OsbZIP23 (Yang et al., 2024)
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enhance plant adaptation. One example is ATX1, the Arabidopsis
H3K4me3 methyltransferases. Its binding to ABA biosynthesis
gene NCED3 (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3)
increases under drought condition, which positively regulates
drought tolerance (Ding et al., 2011a). In contrast, ATX4 and
ATX5 have opposing functions and suppress ABA signaling by
activating the key negative regulator ABA-HYPERSENSITIVE
GERMINATION 3 (AHG3) (Liu et al., 2018e). The H3K4me3
reader, AtBRCA1 (breast cancer susceptibility gene 1) partici-
pates in the regulation of ROS homeostasis during drought stress
(Wang et al., 2020a).
Like ATX1, many epigenetic regulators function in plant

drought responses through modulating ABA signaling pathway
genes, including RESPONSIVE TO DESSICATION 20 (RD20),
ANAC055, and ABI5. For example, both LHP1 and CALCIUM
UNDERACCUMULATION 1 (CAU1) repress ANAC055 expression
(Ramirez-Prado et al., 2019). Under drought stress, CAU1 level
decreases and the repression on ANAC055 is released, leading to
increased proline biosynthesis and drought tolerance (Fu et al.,
2018b). BRAHMA (BRM), a SWI2/SNF2 chromatin remodeling
ATPase, directly binds to ABI5, modulating nucleosome stability
and ABI5 transcription (Han et al., 2012). However, epigenetic
regulation of plant drought responses through ABA pathway-
independent genes is also seen (Ding et al., 2011a).
In addition to regulating the primary drought stress response,

epigenetic modifications also participate in modulating drought
stress memory. H3K4me3 and H3K27me3 modifications are
usually associated with transcriptionally active and inactive
genes, respectively. However, they were found to coexist on
dehydration stress memory genes and function independently
(Liu et al., 2014a). Following rehydration, the persistence of
H3K4me3 modification over dehydration response genes may be
crucial for keeping drought stress memory. Under drought
conditions, H3K4me3 and H3K9ac rapidly increase at drought-
responsive genes, including RD29A and RD29B. During recov-
ery, H3K9ac is removed quickly, whereas H3K4me3 persists
longer (Kim et al., 2012). The persistence of H3K4me3 not only
maintains the basal level transcription of these stress response
genes, but also allows a faster and stronger transcriptional
activation in subsequent drought stresses (Ding et al., 2012; Kim
et al., 2012). The epigenetic mechanism of plant transgenera-
tional drought stress memory remained less understood.
Genome-wide analysis of DNA methylation in Arabidopsis
suggests that mild drought induces changes in the DNA
methylome despite not being heritable (Van Dooren et al.,
2020). Consistently, transgenerational drought memory does
not correlate with these differentially methylated regions (DMRs)
(Ganguly et al., 2017).

Salt stress

To cope with salt stresses, plants employ a number of
physiological responses that involve multiple epigenetic regula-
tions, including DNA methylation, histone modification, and
small RNA regulation (Feng et al., 2016; Lin et al., 2022; Liu et
al., 2023a; Sun et al., 2020b; Ueda et al., 2017; Ueda et al.,
2019). For example, miR172 is induced by salt stress and
positively regulates rice salt tolerance by repressing the expres-
sion of transcription factor INDETERMINATE SPIKELET1; this
regulon could fine-tune the expression of a large group of
enzymatic ROS-scavenging genes and ROS homeostasis during

salt stress (Cheng et al., 2021a). GCN5 promotes cell wall
integrity under salt stress by H3K9ac and H3K14ac deposition at
cell wall synthesis genes including CHITINASE-LIKE 1 (CTL1),
POLYGALACTURONASE INVOLVED IN EXPANSION-3 (PGX3),
and MYB54 (Zheng et al., 2019a).
High-affinity potassium transporters (HKTs) constitute a key

salt response gene family, which maintains sodium-potassium
homeostasis under salinity stress and is shown to be epigeneti-
cally regulated in plants (Byrt et al., 2014; Huang et al., 2008;
James et al., 2006). In Arabidopsis, a putative small RNA
targeted region approximately 2.6 kb upstream of HKT1 is
heavily methylated (Baek et al., 2010). This methylation is
attenuated in RdDM mutant rdr2, with a concomitantly higher
AtHKT1 expression. Salt treatment also induces the shortening
and fractionation of the H3K27me3 deposition island, further
releasing AtHKT1 from repression and permitting its faster
activation upon repeated salt stress (Sani et al., 2013). In wheat,
salt-induced DNA methylation at TaHKT2;1 and TaHKT2;3
promotes tolerance by down-regulating their expression (Kumar
et al., 2017). In rice, histone H3K4 methyltransferase SDG721
promotes salt tolerance through the upregulation of OsHKT1;5
(Liu et al., 2021c), whereas HDAC10 and OsPPR73 form a
repressive complex in repressing OsHKT2;1 in the presence of salt
stress (Wei et al., 2021). Moreover, in plants, epigenetic
modifications over HKT genes appear to be developmental stage-
and tissue-specific (Kumar et al., 2017; Sani et al., 2013). For
example, variations in DNA methylation are associated with
tissue- and genotype-specific expressions of TaHKT2;1 and
TaHKT2;3 in the two varieties, Kharchia-65 and HD-2329, with
contrasting salinity tolerance (Kumar et al., 2017).

Polyploidization

Polyploidy, characterized by more than two full sets of
chromosomes, is a significant driver of crop evolution and
domestication (Jiao et al., 2011). Epigenetic modifications play a
pivotal role in regulating gene expression in polyploids to
overcome the genomic conflicts and generate novel traits
through asymmetric expression of duplicated genes (Ding and
Chen, 2018; Song and Chen, 2015).
Hexaploid wheat (AABBDD) experienced two rounds of

hybridizations. The first round took place between diploid
Triticum urartu (AA) and an unknown B genome donor, followed
by a second round between Triticum turgidum (AABB) and
Aegilops tauschii (DD) (Xiao et al., 2022). Genomic shock occurred
immediately after each polyploidization event (Sha et al., 2023),
prompting epigenetic regulations to reprogram gene expression
and ensure genome stability (Lloyd and Lister, 2022). Studies
have indicated the importance of H3K27me3 homeostasis and
the function of LHP1 in regulating allele-specific gene expression
and subgenome-divergence associated with wheat agronomic
traits, such as disease resistance (Li et al., 2023e; Li et al., 2023e;
Wang et al., 2021c). There is also a concurrent increase in the
level of H3K27me2 and ploidy during wheat evolution. Wheat
H3K27me2 tends to co-localize with the CACTA family
transposon, indicating its role in transposon silencing and
maintaining genome integrity (Liu et al., 2021d).
In addition to histone modifications, DNA methylation

changes manifest in newly formed wheat polyploids (Yuan et
al., 2020). For instance, hypo-DNA methylation in the promoter
regions of root hair development genes and nitrogen transporter
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genes was observed in synthetic allotetraploid wheat (SlSlAA).
This likely contributes to elongated root hairs and enhanced
nitrogen uptake and assimilation compared with the diploid
donors TL05 (SlSl, Aegilops longissima) and TMU06 (AA, Triticum
urartu) (Miao et al., 2024).
Soybean (Glycine max) experienced two rounds of whole

genome duplications (WGD) approximately 59 and 13 million
years ago (MYA) (Schmutz et al., 2010). The second WGD was
specific to Glycine genus, but not its close relative, common bean
(Phaseolus vulgaris). There was a dramatic change in chromatin
3D arrangements during soybean polyploidization (Wang et al.,
2021a). Moreover, approximately 75% of soybean genes exist as
multiple copies due to WGD (Schmutz et al., 2010; Wang et al.,
2012). Compared with singletons and small-scale duplicated
genes, WGD genes feature more long-range chromosomal
interactions, higher levels of active histone marks, and chroma-
tin accessibilities (Wang et al., 2021a). CG gene body methyla-
tion was also abundant in WGD genes (Kim et al., 2015). To
properly interrogate the role of epigenetic variations in regulat-
ing gene expression, it is crucial to differentiate pure epigenetic
variations from those associated with genetic variations. It has
been shown that among DMRs identified among different
soybean cultivars, around 22.54% can be explained by genetic
variations, and those pure DMRs are enriched in carbohydrate
metabolism pathways (Shen et al., 2018).

Domestication

Epigenetic variations have been implicated in regulating
differential agronomic traits during crop domestication (Guo et
al., 2023a). Studies on 104 wheat varieties showed that DNA
methylation patterns correlated significantly with their geo-
graphic origins and traits such as heading date and salt tolerance
(Gardiner et al., 2018). Comparison between nitrogen-efficient
and -inefficient wheat cultivars suggest that histone modifica-
tions like H3K27me3, H3K27ac, and H3K4me3 have a higher
variation and stronger association with the expression of
nitrogen metabolism genes than DNA sequences (Zhang et al.,
2023b). Consistent with this notion, disruption of the
H3K27me3 methyltransferase, TaSWN, led to altered nitrogen
uptake efficiency in response to low nitrogen (Zhang et al.,
2023b; Zhang et al., 2023c).
In addition, previous studies also revealed a differential

regulation by microRNAs during wheat domestication (Shen et
al., 2018). The Q gene influences key traits including seed
dispersal and plant architecture (Jantasuriyarat et al., 2004). The
transition from non-free-threshing wild varieties to free-thresh-
ing domesticated varieties involved a critical missense mutation
within Q gene at an miR172 binding site, attenuating miR172
mediated Q gene transcript degradation (Debernardi et al.,
2017).
Cultivated soybean was believed to be domesticated from its

wild progenitor Glycine soja in China 6,000–9,000 years ago and
since then experienced substantial changes genetically and
epigenetically (Ni et al., 2023; Sedivy et al., 2017; Shen et al.,
2018; Wang et al., 2021a). For example, gene body DNA
methylation differences are implicated in expression divergence
between wild and cultivated soybeans (Kim et al., 2015). High-
resolution Hi-C maps reveal that chromatin loop reorganization
contributes to expression divergence of the genes during soybean
domestication (Wang et al., 2021a). Besides, the comparison

between wild soybeans, landraces, and cultivars detects extensive
A/B compartment switching and TAD boundary variations,
which are highly associated with presence and absence variation
(PAV) (Ni et al., 2023). All of these studies suggest that
epigenetic variations are involved in soybean domestication.

Heterosis

Heterosis refers to the superiority in hybrids over their parents
concerning many traits like biomass, growth rate, yield, and so
on. There are three classic genetic models for heterosis:
dominance, overdominance, and epistasis (Figure 5A) (Birchler
et al., 2010). The dominance model suggests that the dominant
alleles from one parent can complement the deleterious recessive
alleles from the other, thereby increasing the heterosis of the
hybrids. The overdominance model suggests that heterosis is
attributed to the superior interaction between the heterozygous
genotypes compared with either parent’s homozygous genotype.
The epistasis model suggests that heterosis results from the
interaction between non-allelic loci. All these three hypotheses
focus on genetic factors and have been widely applied to
population studies (Figure 5B). However, studies in the past
decade have indicated that epigenetic regulations, including
DNA methylation, histone modification, and chromatin organi-
zation, also have significant impacts in heterosis (Groszmann et
al., 2013; He et al., 2013b; Kakoulidou and Johannes, 2024).
As a most stable and heritable epigenetic modification, DNA

methylation between hybrids and their parents has been
examined in several species, including Arabidopsis, rice, rape-
seed, maize, pigeonpea, tomato, potato, and Chinese cabbage
(Kakoulidou and Johannes, 2024; Ma et al., 2021). In
Arabidopsis, an overall increase in DNA methylation in the
hybrids compared with the parents has been reported (Kakou-
lidou and Johannes, 2024). Further studies showed that this
methylation change, together with sRNAs, contributes to
heterosis (Figure 5B) (Ariel et al., 2014; Greaves et al., 2012;
Ma et al., 2021; Shen et al., 2012). For example, a comparative
analysis of the Ler and C24 hybrids revealed that an increase in
DNA methylation mainly occurred in regions displaying differ-
ential DNA methylation between the parents and was associated
with increased levels of siRNAs. Consistent with this, RdDM is
required for the establishment of both trans-chromosomal
methylation (TCM) and trans-chromosomal demethylation
(TCdM) in Arabidopsis (Figure 5B) (Kakoulidou and Johannes,
2024; Kawanabe et al., 2016; Li et al., 2023e; Zhang et al.,
2016a; Zhang et al., 2016b). Inhibition of DNAmethylation with
5′-Aza-dC treatment or abolishing the production of functional
small RNAs by knocking out HEN1, an RNA methyltransferase,
compromised heterosis (Shen et al., 2012). The circadian clock
gene CCA1 (Central Circadian Oscillator 1) was known to regulate
plant hybrid vigor. The expression amplitudes of CCA1 are
influenced by the mCHH level in the promoter with a parent-of-
origin effect, leading to the biomass heterosis in the hybrids. In
the hybrids carrying mutations in RdDM, including ago4 and
nprd1a, the direction of the rhythmic expression of CCA1 and
hybrid vigor is reversed in reciprocal F1 crosses, further
suggesting the significance of RdDM in heterosis (Ng et al.,
2014).
In addition to Arabidopsis, heterosis, as an efficacious method

of increasing yields, has been intensively studied in various crops
and vegetables (He et al., 2013a; He et al., 2010; Li et al., 2021b;
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Ma et al., 2021; Nakamura and Hosaka, 2009; Shivaprasad et
al., 2012b). In rice, a comprehensive comparison between
Nipponbare and 9311 revealed that sRNAs and DNA methyla-
tion were also involved in the differential expression of genes in
the hybrids (He et al., 2010). In addition, most of the allelic-
specific expression (ASE) in hybrids of ZS97 and MH63 was
associated with mCHG. In maize, the hybrids showed a global
decrease in 24-nt siRNA compared with the parents (Barber et
al., 2012). In mung beans, most of the differentially expressed
genes between the hybrids and parents exhibited differential DNA
methylation, indicating a potentially significant role in heterosis
(Junaid et al., 2018; Sinha et al., 2020). Interestingly, by
comparing the level of CG DMRs between the parents and
hybrids, it was reported that the exon CG DMRs were negatively
correlated with the level of heterosis, while the TSS CG DMRs

were positively correlated. Therefore, the ratio of CG DMRexon/
DMRTSS may be a potential indicator to predict the level of
heterosis in the hybrids. This hypothesis has been validated in 25
widely used rice parents and their hybrid offsprings (Fu et al.,
2023a). In summary, the relationship between differential DNA
methylation and heterosis associated gene expression has been
widely reported, despite of varied degrees and scales (Figure 5C).
In some specific hybrids of Arabidopsis, no significant global

changes in DNA methylation have been observed, such as in the
hybrids of Col and C24 (Banaei Moghaddam et al., 2009; Banaei
Moghaddam et al., 2011), Col and Ler (Dong et al., 2012), Ler
and C24 (Zhu et al., 2017a). However, changes in histone
modifications and gene expression occurred at specific loci, such
as FLC (Figure 5C) (Zhu et al., 2017a). In a study with Col and
C24 hybrids, the parental differences in H3K27me3 level are

Figure 5. The molecular mechanism and epigenetic regulation of heterosis in plants. A, The three traditional hypotheses of heterosis including dominance, overdominance, and
epistasis. B, Genome-wide differential gene expression of hybrids contributes to heterosis, which is correlated to InDels and SNPs of genic and promoter regions. C, The epigenetic
regulations of heterosis including the DNA methylation differences and the histone modification differences between parents and hybrids. These regions with DNA methylation
differences or histone modification differences in F1 hybrids affect the differential expression of genes related to heterosis. The increase of DNA methylation in hybrids,
accompanied by an increase of siRNA, reveals that RdDM pathway may be involved in the regulation of heterosis.
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positively correlated with the allelic bias of H3K27me3 in the
hybrids and thus, exhibiting ASE (Yang et al., 2015). Similarly in
the rice hybrid of Nipponbare and 9311, a positive correlation
between H3K4me3 and ASE has been reported, suggesting a
conserved role of histone modification and heterosis (He et al.,
2010). In Arabidopsis, histone H3 acetylation of key salicylic acid
biosynthesis genes increases in hybrids and contributes to
heterosis for bacterial resistance (Yang et al., 2015). Further-
more, histone modification rhythm alterations of CCA1 play a
role in eliminating the immunity-growth heterosis trade-offs in
hybrids (Yang et al., 2021).
Recent research has suggested the role of 3D chromatin

structure in heterosis. For example, in the hybrids of Arabidopsis
thaliana and Arabidopsis lyrata, the chromatin from A. thaliana
becomes more compact, while that from A. lyrata becomes
decondensed (Zhu et al., 2017b). Additionally, hybrids displaying
heterosis had more distal interactions among CD boundaries,
loops, and homo-trans interactions compared with their parents.
These interactions were mainly enriched in the promoters,
leading to the modulation of genes in heterosis (Gao et al., 2024).
In Brassica napus, analysis of the hybrids between FO and JM
(displaying heterosis) and those between FV and JX (displaying
no heterosis) suggests that the active A component had an
enrichment of differentially expressed genes related to heterosis
(Hu et al., 2022b). While the abovementioned studies shed light
on the involvement of epigenetic modifications in heterosis,
further studies are required to uncover the underlying molecular
mechanisms.

Epigenome engineering

The fundamental principle of precise epigenome engineering is to
target a chromatin modifying component to a specific locus in the
genome, allowing gene expression to be regulated without
altering the genome sequence (Miglani and Singh, 2020). This
can be achieved through modulating various epigenetic compo-
nents including DNA methylation, histone modification, or
ncRNAs. Notably, DNA methylation exhibits a greater herit-
ability (Quadrana and Colot, 2016; Yang et al., 2022d).
Currently, artificial zinc finger (ZF)- and CRISPR-based technol-
ogies have been used for targeted epigenome engineering
(Gallego-Bartolomé, 2020; Gardiner et al., 2022).

Zinc finger protein-based epigenome engineering

Cys2-His2 (C2H2) ZF domain is one of the most common nucleic
acid binding domains in eukaryotes (Pabo et al., 2001). A single
C2H2 ZF domain is formed by approximately 30 amino acids to
recognize 3 nucleotides. Therefore, longer DNA sequences can be
recognized by covalently concatenating multiple designed ZF
domains (Pabo et al., 2001). Using a ZF protein with binding
specificity towards the Arabidopsis FWA promoter (ZF108), a
number of epigenetic regulators have been tested and shown to
induce locus specific DNA methylation, gene silencing, and early
flowering. These epigenetic regulators include SUVH2, DRM2,
DMS3 Microrchidia (MORC), MOM1 (Gallego-Bartolomé et al.,
2019; Johnson et al., 2014; Li et al., 2023d; Xue et al., 2021b).
These studies suggest that specific targeting of DNA methylation
components could be promising for heritable epigenome en-
gineering (Figure 6A). Therefore, ZF-DMS3 have been utilized for
epigenetic engineering in cassava (Manihot esculenta), a crucial

carbohydrate source in tropical regions (Veley et al., 2023).
Xanthomonas phaseoli pv. manihotis (Xam) is a bacterial pathogen
that causes cassava bacterial blight. Xam secretes transcription
activator-like20 (TAL20) into cassava cells to activateMeSWEE-
T10a expression by binding to the Effector Binding Element (EBE)
in its promoter. Directed methylation of EBE by ZF-DMS3 blocks
the binding of TAL20, preventing the activation of MeSWEE-
T10a, and thus increases resistance (Veley et al., 2023).
Similarly, to remove DNA methylation, the catalytic domain of

human ten-eleven translocation (TET1cd) family DNA dioxy-
genases has been fused to ZF108 and proven to be effective in
demethylating FWA (Zhang et al., 2018b; Gallego-Bartolomé et
al., 2018). In addition, targeting TET1cd to a heterochromatic
TE, CACTA1, also results in the loss of methylation. However, in
contrast to FWA, CACTA1 methylation was restored in the
absence of the transgene (Gallego-Bartolomé et al., 2018).
Besides DNA methylation, histone modifications could also

serve as the effectors in epigenome editing. A systematic
screening of 270 putative chromatin proteins was conducted
and those involved in H3K27me3 deposition (MSI1 and LHP1),
H3K4me3 demethylation (JMJ14/18), and histone deacetylation
(HD2A/B/C and HDA6) were able to silence fwa-4 epiallele
(Wang et al., 2023b). However, the repression is not heritable in
the absence of the transgenes (Wang et al., 2023b).

CRISPR/dCas9-based epigenome engineering

Compared with the ZF strategy, deactivated Cas9 nuclease
(dCas9) can recruit epigenetic effectors to genome with greater
versatility (Gardiner et al., 2022; Thakore et al., 2016). To
amplify the modifying effects, the SunTag system was utilized,
where the tandem GCN4 peptide repeats were fused to dCas9,
allowing the recruitment of multiple epigenetic modifiers (Figure
6B) (Tanenbaum et al., 2014). SunTag-TET1cd targeting FWA
has been shown to generate heritable DNA demethylation
(Gallego-Bartolomé et al., 2018). Similarly, SunTag-DRM2cd
has been targeted to FWA, which triggered heritable DNA
methylation (Papikian et al., 2019). In addition, a variant of
bacteria-derived CG-specific DNA methyltransferase, MQ1 (SssI
from Mollicutes spiroplasma), has been utilized to induce highly
specific and heritable DNA methylation when tethered to ZF and
CRISPR/dCas9 (Ghoshal et al., 2021). Recently, SunTag-MQ1
has been used to successfully methylate miR157a in Arabidopsis
(Liu and Zhong, 2024).
To address the solubility issue of scFv in SunTag, MoonTag,

which uses a nanobody NbGP41 and GP41 peptide pair, has been
developed (Figure 6B) (Casas-Mollano et al., 2023). More
recently, instead of using a single effector for DNA methylation
or histone modification, a modular combinatorial epigenome
editing platform, named SSSavi, has been developed (Swain et al.,
2024). This system utilizes four different tags including SpyTag,
SnoopTag, SunTag, and AviTag, which are fused to dCas9 to
enable simultaneous recruitment of different effectors for editing
DNA methylation, histone modifications, etc. (Swain et al.,
2024). This modular multi-effector platform has been proven
effective in human cells, but its application in plants and crops is
yet to be investigated.

Other epigenome engineering methods

In addition to the abovementioned methods, a recent study
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showed that by depositing centromeric CEN180 repeats through
CRISPR/Cas9-mediated knock-in, a local repressive chromatin
environment with DNA methylation and H3K9me2 can be
established (Liu et al., 2023e). The repressive marks could spread
to flanking regions when IBM1 is absent, leading to heritable
gene silencing lasting for at least five generations even without
CEN180 repeats (Liu et al., 2023e). Another study showed that
the insertion of 171 bp of human repetitive α-satellite DNA
(alphoid DNA) could induce DNA methylation and H3K9me2 in
tobacco cells (Otake et al., 2023). In addition, small RNAs have
also been utilized for target specific deposition of DNA methyla-
tion and gene silencing (Figure 6C) (Bond and Baulcombe, 2015;
Gallego-Bartolomé, 2020). These tools offer diverse epigenetic
strategies for targeted gene regulation. In the future, it would be
valuable to investigate the potential applications of this
technique for crop enhancement.

Bioinformatic tools and resources for studying
epigenetics

The advances in omics technologies made it possible for us to
investigate epigenetic regulations at whole-genome level. Ample
efforts have been made in developing more robust computational
models for the efficient utilization of these multi-omics data. The
list of commonly used computational tools has been provided at
the following website (https://epigenie.com/epigenetic-tools-and-
databases/). In addition, to characterize cell type-specific function

of epigenetic regulators, tools that can perform quantitative
comparisons of ChIP-seq data between multiple samples were
developed, including MAnorm and MAmotif (Shao et al., 2012;
Sun et al., 2018). Using MAnorm, specific roles of individual
Polycomb complex components in different biological processes
were elucidated, which include nutrient perception, develop-
ment, and stress responses (International Wheat Genome
Sequencing Consortium, 2018; Liu et al., 2019a; Wang et al.,
2016; Ye et al., 2022; Zhou et al., 2018b).
The online platform, Plant-Regulomics (Ran et al., 2020; Sun

et al., 2018), has collected and curated tens of thousands of
transcriptomic and epigenomic data sets, and integrated a great
variety of experimental pieces of evidence from multiple plant
species. Using this platform, both up- and downstream regulators
of a single gene, gene lists, or a specific genomic locus can be
predicated with high confidence.

Perspectives

Our understanding of epigenetic regulations in diverse biological
processes has progressed dramatically in the past decades. This
knowledge offers us new strategies and tools for utilizing
epigenetic regulations as a means for crop improvements.
Compared with genetic variations, introducing epigenetic varia-
tions into crop improvements is advantageous as it does not
involve changes in the genetic information of an organism and
therefore may be more readily accepted by the public.

Figure 6. Tools for targeted DNA methylation engineering in plants. A and B, Zinc finger (A) and CRISPR/dCas9-based SunTag and MoonTag (B) can target effector proteins to
specific loci in the genome. The effector can be RdDM components or the bacterial CG-specific DNA methyltransferase MQ1 for DNA methylation, or the catalytic domain of TET1
for DNA demethylation. In (A), each zinc finger domain recognizes three base pairs, and the FWA sequence is an example. In (B), the SunTag system and MoonTag system are
similar, except that they use different epitope-antibody pairs. C, Targeting DNA methylation through the small RNA-based RdDM pathway. Expression of double-stranded RNA
targeting a specific locus, through inverted repeats or virus-induced gene silencing, could generate siRNAs via DCL. The siRNA enters the RdDM pathway to establish DNA
methylation.
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However, there are challenges that need to be addressed before
transforming epigenetic variations into useful breeding re-
sources. Pleiotropic effects on plant development caused by
global changes in the epigenetic landscape is often the case when
key epigenetic regulators, such as DNA methyltransferases and
histone modifiers, are mutated. Therefore, the identification of
epi-alleles associated with beneficial traits will help provide useful
targets. Compared with Arabidopsis, most crop plants have much
larger genomes that contain higher contents of repetitive
elements. Many more genes in these crop genomes have
repetitive elements in or near them, and thus their expression
is more likely influenced by the status of DNA methylation and
associated chromatin modifications on the repetitive elements
(Zhang et al., 2018b). Consequently, epialleles are likely more
common in crop plants. Currently, the number of epi-alleles of
useful breeding potential is still far from sufficient. Much effort is
needed in the future to profile the complex epigenomes of crops.
An essential area in future is the tissue and cell type-specific

epigenetic regulation. For instance, understanding how the
components of the epigenetic regulatory complex are differen-
tially assembled across various tissues and cell types, and how
the assembly is determined by or responds to developmental and
environmental stimuli, is crucial. Gaining this knowledge can
significantly contribute to epigenetic engineering, particularly in
targeting specific plant traits for enhancement in designated
tissues, thus achieving an optimal balance among various
developmental aspects. Consequently, elucidating the epigenetic
regulatory mechanisms at the single-cell level is a pivotal
research avenue.
Moreover, the establishment and reconfiguration of transge-

nerational epigenetic memory, and its influence on plant
adaptation and evolution, are of significant interest. The
emergence and stabilization of epigenetic variations may
augment genetic diversity, aiding in plant adaptation, such as
the diversification of traits among different crop cultivars.
Population-level epigenome-wide association studies (EWAS),
involving a substantial number of crop cultivars of differential
breeding histories, could potentially identify and clarify this
phenomenon if it exists.
In the context of agricultural application, stable heritability,

both mitotically and meiotically, has to be achieved in the
absence of the transgenic editing system. This remains a main
challenge, especially with histone or chromatin modifications,
which often are reset through cell divisions after the removal of
the editing system. DNA methylation editing may or may not be
heritable, depending on the genetic sequence as well as the type
and extent of the editing. Success in maintaining the heritability
of these modifications would be key to the utility of those
epigenetically regulated traits. Therefore, strategies and tools
that can enhance the heritability of epigenetic modifications are
highly desirable.
Recent advances in targeted epigenetic modifications have

further made precise editing possible. Still, on-target efficiency
and specificity of the editing systems need to be improved. This is
of particular importance considering that off-target editing may
bring unwanted phenotypes.
Efficient epigenetic engineering as a breeding tool relies on

successfully obtaining positive regenerants, which require
efficient transgene delivery and plant regeneration. So far,
agrobacteria mediated transgene delivery is still the most widely
used method. Novel tools using agrobacteria independent gene

delivery will further expand genetic engineering into plants and
cultivars that are resistant to agrobacteria infection. However,
the regeneration efficiency through traditional tissue culture
remains extremely low for most cultivars of major crops. The
genotype dependency of regeneration efficiency is a more
common problem in obligate outcross crops of high genome
heterozygosity. Therefore, understanding of the epigenetic
mechanism in maintaining cell pluripotency and governing cell
fate transitioning during plant regeneration would be of
tremendous value. Particularly, characterization of the common-
ality and uniqueness of these epigenetic mechanisms across
different plant species will for sure benefit the transformation
efficiency regardless of the crop species.
In summary, further understanding of the epigenetic regula-

tions in gene expression at the tissue and single cell levels; their
roles in growth, development, and environmental interactions;
identification of natural epigenetic variations during evolution
and their contribution to phenotypic diversity and heterosis; as
well as technologies that enable efficient translation of this
knowledge into agricultural applications are needed.
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