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Small RNAs (sRNAs), found extensively in plants, play an essential role in plant growth and development.
Although various sRNA analysis tools have been developed for plants, the use of most of them depends on
programming and command-line environments, which is a challenge for many wet-lab biologists.
Furthermore, current sRNA analysis tools mostly focus on the analysis of certain type of sRNAs and are
resource-intensive, normally demanding an immense amount of time and effort to learn the use of
numerous tools or scripts and assemble them into a workable pipeline to get the final results. Here,
we present sRNAminer, a powerful stand-alone toolkit with a user-friendly interface that integrates all
common functions for the analysis of three major types of plant sRNAs: microRNAs (miRNAs), phased
small interfering RNAs (phasiRNAs), and heterochromatic siRNAs (hc-siRNAs). We constructed a curated
or ‘‘golden” set of MIRNA and PHAS loci, which was used to assess the performance of sRNAminer in com-
parison to other existing tools. The results showed that sRNAminer outperformed these tools in multiple
aspects, highlighting its functionality. In addition, to enable an efficient evaluation of sRNA annotation
results, we developed Integrative Genomics Viewer (IGV)-sRNA, a modified genome browser optimized
from IGV and we incorporated it as a functional module in sRNAminer. IGV-sRNA can display a wealth
of sRNA-specific features, enabling a more comprehensive understanding of sRNA data. sRNAminer
and IGV-sRNA are both platform-independent software that can be run under all operating systems.
They are now freely available at https://github.com/kli28/sRNAminer and https://gitee.com/CJchen/IG
V-sRNA.

� 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Small RNAs play a critical role in plant growth and develop-
ment. They are typically classified into two classes: microRNAs
(miRNAs) and short interfering RNAs (siRNAs) [1,2]. Among siR-
NAs, phased small interfering RNAs (phasiRNAs) [3,4] and hete-
rochromatic siRNAs (hc-siRNAs) [5] are the main subclasses.

With the rapid development of next-generation sequencing
(NGS) technologies and their application in sRNA research, various
bioinformatics tools have been developed for the analyses of the
NGS sRNA data in plants. MicroRNAs, typically 20 to 22 nt in
length, are the most well-studied in plants. Many tools have been
constructed for miRNA identification, such as miRDeep-P2 [6], Mir-
novo [7], miR-PREFeR [8], Shortstack [9], and miRador [10]. How-
ever, when it comes to phasiRNA identification, only a few tools
are available, such as PhaseTank [11] and Shortstack [9], and there
is still no dedicated tool for hc-siRNA identification. In recent years
there have been numerous reports of the involvement of phasiR-
NAs and hc-siRNAs in plant development pathways. For example,
21-nt phasiRNAs preponderate during early anther development
[12,13], and hc-siRNAs are involved in RNA-directed DNA methyla-
tion (RdDM), important for transposon silencing and plant devel-
opment [2,14,15]. Therefore, more sophisticated tools are needed
for phasiRNA and hc-siRNA identification, in addition to miRNA
characterization. A final justification for new tools is that most of
the current and available tools for sRNA data analysis demand
computational skills from researchers, not only for running scripts
using the command-line but also for assembling multiple scripts
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into a workable pipeline. This is both time-consuming and chal-
lenging for wet-lab biologists who intend to analyze their data
on their own but may have weak computational skills.

With the fast and broad application of high-throughput sequenc-
ing technologies in sRNA research, diverse sRNAs have been found in
plants, posting another challenge for computational analyses of NGS
sRNA data. Currently, sRNA annotation tools and pipelines have
numerous deficiencies. The outputs of many tools or pipelines used
for sRNA annotation yield potential misannotations, especially for
miRNA and 24-nt phasiRNAs [16]. This situation is similar to
genome-wide annotations of coding genes [17]. Therefore, manual
checks of the computationally annotated results from NGS data are
a suggested practice and a reliable way tominimizemisannotations,
often based on visualization of the data [18]. Integrative Genomics
Viewer (IGV), an open-source visualization tool, is widely used for
deep sequencing data exploration [19]. It is known for its user-
friendly interface and superb compatibilitywith all kinds of genomic
data stored in various formats. However, due to the distinct charac-
teristics of the biogenesis and function of plant sRNAs, IGV cannot
represent some of the most important features of sRNAs, including,
for instance, the length of sRNA reads (a critical feature of sRNA func-
tion), the distribution pattern of sRNAs (an indication of potential
biogenesis and function modes), and the secondary structure of
sRNA-generating loci (an indispensable feature ofMIRNAgenes) [20].

Here, we developed sRNAminer, an all-in-one toolkit for plant
sRNA analyses with a user-friendly interface. It can not only analyze
miRNA, phasiRNA, and hc-siRNA with minimal user effort but also
provide a variety of common sRNA analysis functions, including
sRNA target analysis, degradome analysis, prediction of secondary
structure, PHAS locus graphing, and so on. In addition, we have devel-
oped, on the basis of IGV, a new tool specifically for the visualization
of various characteristics of sRNAs and the browsing of NGS sRNA
data. We named this functionally improved browser tool IGV-sRNA,
which has been incorporated into sRNAminer as a functional module
for efficient and effective browsing and visualization of resultant
files. This toolkit, sRNAminer, has been widely tested by users and
it will be a useful addition to the toolbox of sRNA researchers.
2. Materials and methods

2.1. Dataset

The miRNA annotation results of Arabidopsis thaliana and Oryza
sativa used for constructing the miRNA golden sets were sourced
from miRBase [21], PmiREN [22], sRNAanno [23]. For the construc-
tion of a golden set of PHAS loci, we utilized four datasets of Oryza
sativa obtained from the National Center for Biotechnology Infor-
mation (NCBI) (accession#: SRR3955351, SRR3955352,
SRR3955353, SRR3955354).

To evaluate the performance of sRNAminer in miRNA identifica-
tion, for demonstration, we obtained 15 datasets from NCBI, three
from Arabidopsis thaliana (accession#: SRR3992484, SRR3992485,
SRR3992486) and 12 from Oryza sativa (accession#: SRR11622382,
SRR11622413, SRR11622414, SRR11622415, SRR11622416,
SRR12744573, SRR11622383, SRR11622384, SRR11622385,
SRR11622386, SRR11622387, SRR11622393). For the performance
evaluation in PHAS locus annotation, we used the same 12 datasets
from Oryza sativa used for miRNA annotation and three datasets from
Fragaria vesca (accession#: SRR1586419, SRR1586420, SRR1586424).
2.2. Pre-processing of sRNA-seq data

Adapters were removed from all the sRNA-Seq data using sRNA-
miner. Clean reads with a length of at least 15-nt were kept for fur-
ther analyses.
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2.3. Pre-processing workflow of sRNAminer

For adapter trimming, ten read sequences are randomly
selected from the raw sequence file and aligned to search for
the longest common substring sequence, which is extracted as
a candidate adapter sequence. This process is repeated 1000
times, resulting in 1000 candidate adapter sequences. The fre-
quency of each candidate adapter sequence are then counted,
and the candidate adapter sequence with the highest frequency
is chosen. After that, the possible extension of the candidate
adapter toward the 50 terminal of reads is checked. If an exten-
sion is found, the adapter sequence will be elongated; otherwise,
the extension process will be halted, and the final adapter
sequence will be determined. Using the obtained adapter, adap-
ter trimming is performed on the raw sequencing data with one
mismatch allowed.

For data cleaning, sRNA sequencing data often contain reads
generated from other sources: ncRNA (rRNA, tRNA, snoRNA, and
snRNA), cpDNA/RNA, and mtDNA/RNA. These read data are usually
removed before sRNA annotation. Reported ncRNA and organelle
sequences are collected from Rfam database and organelle genome
from NCBI, respectively. We removed reads that match these
sequences with one mismatch allowed.

For sequence collapsing, sRNAminer is designed to support
large-scale data analysis on low-memory computing devices. By
default, reads are initially divided into 16 files based on the combi-
nation of the first two bases of each read sequence. Subsequently,
sequence redundancy counting is performed for each sequence file,
and redundant sequences are merged with the frequency of each
sequence recorded.

For alignment and bam file preparation, bowtie 1 [24] is used to
map the reads to the reference genome and bam file is generated
by SAMtools [25].

2.4. Parameter calculation of sRNAminer

Identification of miRNA, phasiRNA, and hc-siRNA followed the
approaches we used in our previous work [23]. The P-value and
phasing score were calculated based on the method mentioned
in the previous study [26]. The repeat score is calculated for each
15-mer based on its total hits on genome, with a formula of
log2ðHits of 15�mer=4Þ.

2.5. miRNA and PHAS loci identification assessment

To assess the sensitivity and precision of sRNAminer, the F1
score was utilized as a metric. This metric was mainly calcu-
lated based on sensitivity and precision. For a more compre-
hensive and objective evaluation, we constructed golden sets
for miRNA in Arabidopsis thaliana and Oryza sativa, as well as
a golden set for PHAS loci in Oryza sativa, which were used in
the calculation of the F1 score. The calculation formulas are as
follows:

Sensitivity¼PredictedmiRNA=PHAS locifoundingoldenmiRNA=PHAS lociset
miRNA=PHAS loci ingoldenmiRNA=PHAS lociset

;

ð1Þ

Precision ¼ PredictedmiRNA=PHAS loci found in goldenmiRNA=PHAS loci set
PredictedmiRNA=PHAS loci

;

ð2Þ

F1 ¼ 2 � precision � sensitivity
precisionþ sensitivity

: ð3Þ
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2.6. Program implementation

All tools were run on a local server using the default or recom-
mended parameters. The server was equipped with 64 central pro-
cessing units (CPUs, Intel(R) Xeon(R) Platinum 8370C CPU @
2.80 GHz) and 1007 GB of RAM. The operating system was
CentOS7.
3. Results

3.1. Overview of functions in sRNAminer

Compared with other tools, sRNAminer is a cross-platform soft-
ware with a Graphical User Interface (GUI) that can be run under
Windows, Macintosh, and Linux. Moreover, we also provide a
command-line version for users to analyze large data on servers.
Notably, sRNAminer covers different types of sRNA analysis with
data browsing functions while other tools focus on certain, limited
Table 1
Performance comparison of benchmarked tools.

Key Features miRDeep-P2

Command line
p

Cross-platform (Linux, Mac OS, and Windows) �
GUI (Graphical User Interface) �
Adapter Trimming �
Noisy Sequence Filtering

p
miRNA Analysis

p
phasiRNA Analysis 21-nt �

24-nt �
hc-siRNA Analysis �
Degradome Analysis �
sRNA Data browsing in real-time �
miRNA secondary structure plot �
PHAS locus graph �

Fig. 1. Outline of functions in sRNAminer. (a) sRNAminer covers data pre-processing, a
analysis functions related are also provided. IGV-sRNA, incorporated in sRNAminer, is a
including phasing score, repeat score, sRNA abundance, etc. (b) sRNAminer provides a ‘‘O
hc-siRNA annotation and abundance calculation results with one click after specifying g
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areas (Table 1 and Fig. 1a). The functions of sRNAminer are divided
into three main parts: (1) Data pre-processing. This part includes
four steps, from Adapter Trimming and Sequence Collapsing to
Data Cleaning and Genomic Mapping. (2) sRNA identification and
abundance calculation, which can be performed for three main
types of sRNAs, miRNA, phasiRNA, and hc-siRNA. (3) Other com-
mon functions, including sRNA target prediction, PHAS trigger
identification, and degradome analysis, etc. All the sRNA analysis
methods were coded from scratch using Java and Python, except
for the degradome analysis, which was migrated from a previous
open-source tool sPARTA [27].

To enable the easiest and quickest analysis of sRNA data, we
offered a ‘‘One step analysis mode” (One step sRNAminer)
(Fig. 1b). Users can simply input the sRNA sequence data and gen-
ome files and click ‘‘Start” to identify different types of sRNAs and
estimate their abundances.

IGV-sRNA is a powerful sRNA data visualization tool that we
developed, on the basis of the original IGV software, to provide
Mirnovo miR-PREFeR Shortstack PhaseTank sRNAminer
p p p p p
� p � � p
� � � � p
p � p � p
p � � p p
p p p � p
� � p p p
� � p p p
� � � � p
� � � p p
� � � � p
� � � � p
� � � � p

nnotation of different types of sRNAs, and abundance calculation. Several common
genome browsing tool for users to visualize the features of sRNA-generating loci,

ne step sRNAminer” function, which enables users to obtain miRNA, phasiRNAs, and
enome files, raw data, and databases.
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numerous additional functions specialized for plant sRNA profiling,
including secondary structure visualization, calculation of the
phasing score on-the-fly, and read length visualization in a color-
coded dot plot (Fig. 1a). The same color scheme for sRNA length
can also be applied to the visualization of sRNA genomic align-
ment, allowing users to easily detect the distribution pattern of
sRNAs with different lengths. To ensure a more flexible and conve-
nient browsing of sRNA data, the ‘‘sRNA viewer” function in sRNA-
miner is designed to interact with IGV-sRNA.

3.2. Golden miRNA and PHAS loci set construction

Currently, there are several small RNA databases available, such
as miRBase [21], PmiREN [22], sRNAanno [23], and plant MPSS
databases [28]. However, the lack of manually checked high-
quality sRNA loci datasets poses a challenge in evaluating the per-
formance of various sRNA analysis tools. To address this gap, we
set out to construct golden sets of miRNAs and PHAS loci; that is,
sets of manually curated, high-quality, reference data sets.

For miRNAs, we constructed the golden sets using the following
process: Firstly, we obtained miRNA sets of Arabidopsis thaliana
and Oryza sativa, which serve as model plants for eudicots and
monocots, respectively, from miRBase, sRNAanno, and PmiREN.
Subsequently, we filtered for miRNAs that were presented in at
least two databases. To ensure the accuracy of these filtered miR-
NAs, we double-checked their secondary structures manually
Fig. 2. Workflow of the construction of miRNA/PHAS loci golden set. The bottom part of
(ath-) and Oryza sativa (osa-). The bottom part of (b) presents the sRNA distribution and
purple box indicates the miR2118 targeting site on the anti-sense strand, and the dark

787
(Fig. S1 online), resulting in the creation of the golden set of miR-
NAs (Fig. 2a). As a result, there were 204 miRNAs in the golden set
of Arabidopsis thaliana (Table S2 online) and 330 in the golden set
of Oryza sativa (Table S3 online).

For the PHAS loci, some monocot species, for instance, rice
(Oryza sativa), have much larger quantities of PHAS loci in the gen-
ome, compared to the eudicot model plant, Arabidopsis [4]. We
analyzed the small RNA data from Oryza sativa (Table S1 online)
using sRNAminer, PhaseTank [11], and PHASIS [29] to obtain a set
of 21-PHAS loci (generating 21-nt phasiRNAs). Given the well-
established role of miR2118 as a trigger for 21-PHAS loci [30], we
examined whether these loci were targeted by miR2118. If an iden-
tified locus contained the target site of miR2118, we checked the
number of miR2118 targeting sites and split the tandem 21-PHAS
loci. Conversely, in cases where miR2118 did not target the loci,
we evaluated their phasing patterns manually (Fig. 2b). In total,
we identified 2462 21-PHAS loci in the golden set of Oryza sativa
(Table S4 and Fig. S2 online). In addition, using a similar approach,
we identified 126 24-PHAS loci (generating 24-nt phasiRNA) in the
golden set of Oryza sativa (Table S5 and Fig. S3a online).

3.3. Fast and accurate sRNA locus annotation of sRNAminer

sRNAminer applies well-established criteria to miRNA identifi-
cation [23]. We benchmarked sRNAminer with two commonly
used miRNA annotation pipelines, miRDeep-P2 and ShortStack in
(a) shows the structure of exemplative golden-set miRNAs for Arabidopsis thaliana
phasing score of a representative golden-set PHAS locus for Oryza sativa. The dark

purple line indicates the miR2118 cleavage site on the anti-sense strand.



Fig. 3. Performance comparison of sRNAminer with miRDeep-P2 and ShortStack on
miRNA annotation. F1 scores and run time of three software packages were
compared using NGS sRNA datasets from Arabidopsis thaliana (a) and Oryza sativa
(b).
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Arabidopsis thaliana and Oryza sativa (Table S1 online). To ensure
high accuracy, the software retained only 20- to 22-nt miRNAs
for comparison, as miRNAs out of this length range have been
rarely reported to be functional. To evaluate the performance of
different software with precision and sensitivity, we employed
the comprehensive metric known as F1 score which can provide
a balanced measure of a tool’s performance on precision and sen-
sitivity. We found that sRNAminer obtained F1 scores comparable
to miRDeep-P2 in both Arabidopsis thaliana and Oryza sativa, but
much higher than ShortStack (Fig. 3). Notably, compared to
miRDeep-P2, sRNAminer completed the miRNA identification in
only half the time (Fig. 3). Overall, we contend that the miRNA
annotation function in sRNAminer can retrieve highly reliable
results more efficiently.

PhasiRNAs represent another major class of sRNAs. The identifi-
cation of PHAS loci is based on the P-value and phasing score [26].
The default cut-off of P-value and phasing score in sRNAminer are
10﹣3 and 10, respectively. We used F1 score as well to compare the
performance of sRNAminer and PhaseTank using small RNA data
from rice reproductive tissues at four developmental stages [31]
(Table S1 online). Despite a slightly longer run time compared to
PhaseTank, sRNAminer consistently achieved higher F1 scores
across all stages for 21-PHAS loci identification (Fig. 4a). sRNAmi-
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ner was able to specifically identify 227 21-PHAS loci in the golden
set among four stages, such as the locus PHAS21-1616, while Pha-
seTank was only able to specifically identify seven loci (Fig. 4a).
To demonstrate the generalizability of sRNAminer, we also evalu-
ated the performance of sRNAminer and PhaseTank using sRNA
datasets from Fragaria vesca (Table S1 online), a eudicot species
known for containing a large number of PHAS loci [32]. Specially,
we define a PHAS locus with the P-value less than 10﹣5 and the
phasing score greater than 15 as a highly confident locus. The
result showed that sRNAminer detected much more 21-PHAS loci
compared to PhaseTank. Among these, 38 loci were manually ver-
ified as highly confident ones, such as the locus PHAS21-56
(Fig. 4b). In contrast, PhaseTank identified 30 extra PHAS loci, but
none of them were highly confident upon manual evaluation.
Moreover, in addition to 21-PHAS loci, sRNAminer can also be used
for the identification of 24-PHAS loci which produce 24-nt phasiR-
NAs, another main class of phasiRNAs in plants [33]. We also eval-
uated the performance of sRNAminer and PhaseTank on 24-PHAS
loci identification with the same dataset used to evaluate the per-
formance of 21-PHAS loci identification. Similarly, compared to
PhaseTank, sRNAminer consistently achieved higher F1 scores
across all stages and specifically identified 13 24-PHAS loci in the
golden set among four stages, such as the locus PHAS24-94
(Fig. S3b online). In conclusion, sRNAminer is a powerful tool for
the annotation of PHAS locus with high sensitivity and accuracy.

Heterochromatic siRNAs (hc-siRNAs) represent the most abun-
dant class of sRNA found in most plant genomes. In sRNAminer, we
also developed a method to annotate genomic loci that generate
hc-siRNAs. We first identify genomic loci with a predominant rep-
resentation of 23 and 24 nt small RNAs, which account for 50 % or
more of the total sRNAs in the loci. As hc-siRNAs are mostly
derived from repetitive regions of the genome, mainly transposons,
we adapted a metric of the average hits of mapping reads to eval-
uate the repetitiveness of a sequence; this can distinguish hc-
siRNAs from other types of 24-nt siRNAs, for instance, non-
repetitive 24-nt phasiRNAs (Fig. S4 online) and 24-nt siRNAs
derived from long inverted-repeat regions. sRNA-generating
regions with average hits greater than ten were, by default, consid-
ered as hc-siRNA loci.
3.4. IGV-sRNA for browsing NGS sRNA data

IGV [19] is a popularly used browser for viewing NGS data gen-
erated by all kinds of sequencing techniques. However, current
implementations of this browser are not effective for browsing
sRNAseq data, because of the unique features of interest to small
RNA biologists that are largely irrelevant for RNA-seq data or other
datatypes more frequently displayed in IGV. These features rele-
vant to sRNAseq data include high sequence repetitiveness, the
critically important variation in length (i.e., differences of a single
nucleotide), the importance of one single read (and its exact posi-
tion and abundance), and other features. Therefore, we developed
an enhanced version of IGV, IGV-sRNA, as a function module in
sRNAminer; this module is powerful for manually exploring plant
sRNA sequencing data. Several sophisticated display features were
implemented.

First, IGV-sRNA can automatically resolve the genome-mapped
file of collapsed sRNA datasets, which makes it compatible with the
high sequence redundancy of raw sRNA data (Fig. 5). Second, sRNA
reads can be color-coded according to their length, with the cyan
color for 21-nt reads, green for 22-nt, purple for 23-nt, orange for
24-nt, and grey for others (Fig. 5); these color assignments are con-
sistent with other small RNA genome browsers [34]. All the sRNA
reads can be shown with these different size-based colors, which



Fig. 4. Performance comparison of sRNAminer with PhaseTank on 21-PHAS locus annotation. Results and run time of both tools were compared using NGS sRNA datasets
from Oryza sativa (a) and Fragaria vesca (b). (a) These datasets come from the four stages of rice reproductive tissues which are PMC formation stage (PFS), PMC prophase stage
(PPS), PMC meiotic divisions stage (PMS), and early microspore stage (EMS). The bottom panel shows the mapping (dot plot) and phasing score (line plot) of a representative
21-PHAS locus (PHAS21-1616) in the golden set, which were identified by sRNAminer but not by PhaseTank. The red box indicates the miR2118 targeting site on the sense
strand, and the red line indicates the miR2118 cleavage site on the sense strand. (b) The number in red color represents the quantity of highly confident 21-PHAS loci (phasing
score � 15 and P-value � 10﹣5) with manual validation. The bottom panel shows the mapping (dot plot) and phasing score (line plot) of representative high-confident 21-
PHAS locus (PHAS21-56), which were identified by sRNAminer but not by PhaseTank.
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is helpful for the quick assessment of the distribution profile of dif-
ferent sRNA. sRNA abundance can also be shown in a color-coded
dot plot. Third, a genomic sequence can be folded to show its sec-
ondary structure with coverage information indicated simultane-
ously (Fig. 5a), which is critical for the evaluation of a MIRNA
locus. Fourth, the phasing score of phasiRNAs is calculated
instantly, according to their length, and displayed using a line plot.
Whether a sRNA-generating locus is an authentic PHAS locus or not
can be quickly evaluated by the data track showing the phasing
score (Fig. 5b, c). Furthermore, the pre-calculated repeat score from
a genome can be shown for hc-siRNA loci. The pre-calculated data
of repeat scores can be loaded into IGV-sRNA to quickly assess the
repetitiveness of a sequence or region (Fig. 5d).

To help users check their sRNA loci of interest in IGV-sRNA
more easily, we developed a function called ‘‘sRNA viewer” in
sRNAminer. It can automatically import read alignment and gen-
ome sequence files into IGV-sRNA and create an interactive table
based on the sRNA identification results provided by users. Users
could simply click the ‘‘GO” button to switch the IGV-sRNA view
to the position of the sRNA locus directly (Fig. S5 online). In addi-
tion, it is convenient for users to fold a sequence to check the sec-
ondary structure and color the miRNA:miRNA* by using the
function of ‘‘Vienna RNAfold” in sRNAminer (Fig. S6a online).
Publication-quality graphs for the PHAS locus can be easily pre-
pared in sRNAminer; for this, users just need to input the informa-
tion of the PHAS locus, then the graph will be exported
automatically (Fig. S6b online). Overall, sRNAminer in combination
with IGV-sRNA provides a great way for users to manually evaluate
the annotation results of sRNA loci.
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3.5. Command-line version of sRNAminer

Local personal computers with limited computational resources
are usually not suitable for tasks requiring numerous CPU cores
and a large memory footprint, such as performing sRNA analysis
for hundreds of datasets or in species with a large genome (>3
Gb). Most resource-intensive tasks rely on high-performance com-
puting servers. Therefore, we also offer a command-line version of
sRNAminer which allows users to run sRNAminer in command-line
environment on servers. The command-line version of sRNAminer
can be easily installed via conda, and its parameters are set in a
clear and easy way of ‘‘sRNAminer + function + parameter”
(Fig. S7 online), allowing users to quickly master the usage of
sRNAminer commands. Notably, multithreading is also supported
in sRNAminer, which enables the processing of large datasets at
high speed.
4. Conclusions

Collectively, sRNAminer can be used for the annotation of all
the three major classes of plant sRNAs in a fast and accurate
way. sRNAminer coupled with IGV-sRNA provides a convenient
and efficient way for the visualization of alignment data, which
can help minimize the false-positive rate of annotation results.
To help users get started as quickly as possible, we provide instruc-
tions for the use of sRNAminer and IGV-sRNA (https://www.
yuque.com/u758713/at2327).



Fig. 5. Representative sRNA-generating loci viewed with IGV-sRNA. (a) A representative MIRNA locus. Users can fold a sequence to view the secondary structure with
coverage information indicated synchronously. The abundance of each sRNA is showed in color-coded dot plots (track #2), with the cyan color for 21-nt reads, green for 22-nt,
purple for 23-nt, orange for 24-nt, and grey for others. All alignments in IGV-sRNA are displayed with different color codes according to read length (track #3). (b, c)
Representative 21-PHAS (b) and 24-PHAS (c) loci. The phasing score of phasiRNAs can be calculated instantly according to their length and displayed by line plot (track #5). (d)
A representative hc-siRNA locus. 23 or 24 nt sRNA are enriched in this region with a high repeat-score (track #6).
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