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Abstract

Background: The GRAS gene family plays crucial roles in multiple biological processes of plant growth, including
seed development, which is related to seedless traits of litchi (Litchi chinensis Sonn.). However, it hasn’t been fully
identified and analyzed in litchi, an economic fruit tree cultivated in subtropical regions.

Results: In this study, 48 LcGRAS proteins were identified and termed according to their chromosomal location.
LcGRAS proteins can be categorized into 14 subfamilies through phylogenetic analysis. Gene structure and
conserved domain analysis revealed that different subfamilies harbored various motif patterns, suggesting their
functional diversity. Synteny analysis revealed that the expansion of the GRAS family in litchi may be driven by their
tandem and segmental duplication. After comprehensively analysing degradome data, we found that four LcGRAS
genes belong to HAM subfamily were regulated via miR171-mediated degradation. The various expression patterns
of LcGRAS genes in different tissues uncovered they were involved in different biological processes. Moreover, the
different temporal expression profiles of LcGRAS genes between abortive and bold seed indicated some of them
were involved in maintaining the normal development of the seed.

Conclusion: Our study provides comprehensive analyses on GRAS family members in litchi, insight into a better
understanding of the roles of GRAS in litchi development, and lays the foundation for further investigations on litchi
seed development.
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Background
GRAS is a major plant-specific transcription factor gene
family among numerous transcription factors that are
proved to function in plant growth and development,
whose name is termed from the first three functionally
characterized members, gibberellic-acid insensitive (GAI)
[1], repressor of GAI (RGA) [2], and scarecrow (SCR) [3].
Typically, the GRAS proteins usually encompass 400–770

amino acids (aa) [4] and contain a variable N-terminal re-
gion and a highly conserved C-terminal region. The con-
served region was composed of five motifs: LHRI, LHRII,
VHIID, PFYRE, and SAW [4–6]. GRAS proteins were di-
vided into eight basic subfamilies in Arabidopsis thaliana
and rice (Oryza sativa L.) according to their common fea-
ture [6]. Whereas in other plants such as Prunus mume
[7], Medicago truncatula [8], Chinese Cabbage (Brassica
rapa ssp. pekinensis) [9], pepper (Capsicum annuum L.)
[10], tomato (Solanum lycopersicum) [11], sacred lotus
(Nelumbo nucifera) [12], tea plant (Camellia sinensis)
[13], Populus [14], pine (Pinus radiata) [15], castor beans
(Ricinus communis) [16], Tartary buckwheat (Fagopyrum
tataricum) [17], and cotton (Gossypium hirsutum L.) [18],
the number of subfamilies varied from eight to 14,
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suggesting that specific subfamilies might be present in
these species.
GRAS proteins are involved in many physiological pro-

cesses such as signal transduction, root radial patterning
and development, stress responses and meristem devel-
opment [19]. However, each subfamily may have differ-
ent functions. For instance, DELLA proteins act as
inhibitory factors in the gibberellic acid (GA) signal
transduction pathway and modulate the jasmonic acid
(JA) signal transduction [20]. PAT1 is participating in
phytochrome signaling of Arabidopsis [21]. Besides, SCR
and SHR proteins are involved in root and shoot radial
patterning in Arabidopsis [22]. SCL3 acts as an integra-
tor downstream of the GA/DELLA and SCR/SHR path-
ways, mediating the GA-promoted cell elongation
during root development [23]. Moreover, OsMOC1,
AtLAS, and SlLS play important roles in axillary meri-
stem initiation, plant tillering, and control of grain yield
[24–26]. Additionally, SCL13 with stress-related func-
tions have been discovered in cabbage [27], petunia
HAM mediates signals from differentiating cells for
functioning in shoot meristem maintenance [28].
It has been mentioned in previous studies that some

GRAS genes from HAM subfamily were targeted by
miR171, which play diverse roles in plant development,
such as flowering and phase transition [29, 30]. A
miR171-SCL6 model contributes to embryogenic callus
induction and torpedo-shaped embryo formation during
somatic embryogenesis in two lily species [31]. In Arabi-
dopsis, SCL6/SCL6-IV, SCL22/SCL6-III, and SCL27/
SCL6-II are also known as targets of miR171, and play
pivotal roles in the proliferation of meristematic cells
[32, 33]. Overexpression of a tomato miR171 target
gene, SlGRAS24, impacts multiple agronomical traits
such as plant height, flowering time, root length, fruit
set and development [34].
Litchi is a subtropical fruit tree of family Sapindaceae

with great economic and nutritional value. Based on
fruit anatomy, the fruit of litchi is a drupe with an edible
aril enclosing a single seed surrounded by a pericarp
[35]. Small seeds or seedlessness is an economically de-
sirable trait of litchi, which lead to great market value.
In flowering plants, seed development is preceded by a
double fertilization event, which form the precursor cells
of embryo and endosperm. The endosperm is essential
for the development of an embryo and the rapid disinte-
gration of endosperm lead to the abortion of seed. Co-
ordination in the growth of endosperm and embryo is
crucial during early seed development, results in the dis-
crepancy in seed size in a fruit [36]. A bunch of GRAS
genes were supposed to take part in determining endo-
sperm and embryo development in several species, af-
fecting seed development. In lily, a GRAS gene
belonging to the LlSCL subfamily, plays a role in the

microsporogenesis process of the anther [37]. GS6, a
unique member of the GRAS gene family, was respon-
sible for the reduction of grain size and weight during
the domestication of rice [38]. In P. mume, 25% of GRAS
genes showed higher expression in seeds [7]. In apple,
the higher expression level of MdGRAS126, MdGRAS18,
and MdGRAS79 in seeds in accordance with the finding
in P. mume [7, 39], indicating the important roles of
GRAS genes in seed development. However, the bio-
logical function of GRAS proteins in seed development
of litchi remains scarce. Hence, a comprehensive analysis
of GRAS genes in litchi would be informative in laying
foundation for the characterization of their potential
function, especially in seed development.
In our study, two different litchi cultivars (‘Huaizhi’

and ‘NMC’) and a wildtype litchi (‘WL10’) were used to
carry out a genome-wide analysis of GRAS genes in li-
tchi. As a result, 48 LcGRAS genes were identified. Gene
structure, phylogeny, chromosomal distributions, dupli-
cation events, dual synteny analysis, and miRNA-
mediated regulation were characterized. Expression pat-
tern of LcGRAS genes was detected in various tissues
and four different stages during seed development, in-
cluding 15, 25, 35, and 45 days after anthesis (DAA),
representing near globular-shaped, heart-shaped,
torpedo-shaped and cotyledon-shaped embryo stage.
Among them, LcGRAS1, LcGRAS15, LcGRAS24,
LcGRAS28, LcGRAS29, LcGRAS40, and LcGRAS48 were
found to exert its potential function in seed development
of litchi via auxin and GA pathway.

Results
Identification and phylogenetic analysis of LcGRAS genes
Based on homology analysis, 48 LcGRAS proteins were
identified from the litchi genome (Additional file 1:
Table S1, Additional file 2), which were renamed from
LcGRAS1 to LcGRAS48 according to the chromosomal
location. The length of LcGRAS proteins was between
422 aa (LcGRAS47) and 803 aa (LcGRAS34). The pre-
dicted molecular weight (MW) of the proteins ranged
from 47.24 kDa (LcGRAS18) to 89.89 kDa (LcGRAS34),
and the predicted isoelectric point (pI) ranged from 4.62
(LcGRAS30) to 8.67 (LcGRAS7) (Additional file 1: Table
S2). The numerical range of the above characteristics is
similar to that of other species [7, 10], indicating that
our identification of LcGRASs is relatively accurate, and
the basic characteristics of GRASs are relatively con-
served in different species.
To explore the phylogenetic relationship of LcGRAS

protein, we constructed a phylogenetic tree based on the
amino acid sequences of 48 LcGRAS, 32 AtGRAS, and
53 OsGRAS proteins. According to previous studies [6,
18], 48 LcGRAS members were divided into 14 subfam-
ilies: SCR, SHR, DELLA, PAT1, HAM, LISCL, LAS,
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SCL3, SCL4/7, DLT, Os4, Os19, Os43 and L_GRAS
(Fig. 1). The HAM subfamily possessed the most
LcGRAS members (11), followed by LISCL (9), PAT1
(6), SHR (5), DELLA (3), SCR (3), SCL3 (1), LAS (1),
AtSCL4/7 (1), and DLT (1). In addition, 2, 1, 1 of
LcGRAS proteins were respectively grouped into the
Os4, Os19, and Os43 subfamilies, all of which were pre-
viously reported as rice-specific [14]. These LcGRAS
members may exist before the divergence of dicotyle-
dons and monocotyledons and lost in Arabidopsis. Fur-
thermore, the L_GRAS subfamily contained three
members, all of which were from litchi, implying that
this litchi-specific subfamily may have unique functions
in litchi or close species.

Gene structure and conserved domain analysis
To further understand the composition of LcGRASs, the
gene structures of them were compared. 81.3% of the
LcGRASs were intronless, only nine LcGRAS members
had one or more introns (Fig. 2a, b). All LcGRAS

proteins incorporated the GRAS domain. Among them,
three members (LcGRAS3, LcGRAS15, LcGRAS41) oc-
cupied a DELLA domain, which was essential for GA
signal perception. A total of 15 distinct conserved motifs
(named motif 1–15) were identified in our motif analysis
and almost all LcGRAS proteins contain motif 1, 3, 4, 5,
7, 8, 9, 10, 11, 14 (Fig. 2a, c). Interestingly, motif loca-
tions exhibited subfamily specific patterns. For example,
motif 6 only existed in PAT1, LISCL, HAM, and
AtSCL4/7 subfamilies, while motif 12, 13, and 15 were
only located in the N-terminal of the members in LISCL
subfamily (Fig. 2a, c). In general, different subfamilies
embraced various structure compositions, suggesting
their great functional diversity.

Chromosomal distribution and synteny analysis of LcGRAS
genes
LcGRAS genes were unevenly distributed on the 15
chromosomes of litchi (Fig. 3). There are 7 LcGRAS
genes located in Chr3, Chr13, and Chr15 respectively,

Fig. 1 Phylogenetic tree of the GRAS gene family in litchi, rice, and Arabidopsis. The phylogenetic tree was constructed using Maximam-
Likelihood (ML) method by MEGA7.0. Subfamilies were marked by bold yellow lines or orange lines in the external circle. The pink circles, green
triangles and blue stars represent GRAS genes from litchi, Arabidopsis and rice, respectively
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followed by 5 in Chr11 and 4 in Chr8. Four chromo-
somes (Chr1, Chr2, Chr7, Chr10) had three LcGRAS
loci, while two of them (Chr12, Chr14) contained two
LcGRAS genes, respectively. Chr4 and Chr9 possessed
only one LcGRAS loucs (Fig. 3). Gene duplication con-
tributed to the amplification of the LcGRAS family. Tan-
dem duplication (highlighted in red in Fig. 3) was
presented in Chr3, Chr8, Chr13 and Chr15, indicating
that they were hot spots for LcGRAS gene distributions
(Fig. 3). Moreover, seven pairs of segmental duplication
genes (orange lines) were detected between chromo-
somes: Chr1/Chr3, Chr3/Chr10, Chr3/Chr15, Chr3/
Chr13, Chr7/Chr14 and Chr13/Chr15 (2 pairs) (Fig. 3).
Tandem and segmental duplication events of LcGRAS
genes occurred mainly in HAM, LISCL, DELLA, and L_
GRAS subfamilies. Taken together, these results sug-
gested that tandem and segmental duplication may have
been the main driving force of the evolution of the litchi
GRAS family.

To further deduce the relationship of the LcGRAS
genes, we checked their synteny with GRAS genes from
a dicotyledonous plant (A. thaliana) and one monocoty-
ledonous plant (O. sativa) (Fig. 4). A total of 13 LcGRAS
genes showed syntenic relationships with AtGRAS genes,
and 8 of them had syntenic loci in rice. LcGRAS28,
LcGRAS29, LcGRAS33, and LcGRAS44 had syntenic loci
in both Arabidopsis and rice (Fig. 4, Additional file 1:
Table S3). These four genes belonged to either the SHR
(LcGRAS28, LcGRAS29) or the LISCL (LcGRAS33,
LcGRAS44) subfamily, hinting their conserved biological
function in plants.

Analyses of miRNA targeting LcGRAS genes
microRNAs are crucial regulatory factors in plants. They
regulate the expression of target genes at post-
transcriptional level [40]. By combining analyses of
degradome data sets from four different libraries, eight
miRNAs might have the potential to regulate LcGRAS

Fig. 2 Phylogenetic relationship, exon–intron structure, conserved domains and motif pattern of LcGRAS proteins (genes). a Phylogenetic
relationship among the litchi GRAS proteins. The unrooted tree was generated using the maximum-likelihood method. The reliability was
assessed using 1000 bootstrap replicates. b Exon-intron structure and conserved domain regions of LcGRAS genes. Gray lines indicates the
position of introns. Information of exon, intron, and functional domain was obtained from model gene annotation and results of NCBI Batch-CD
search and visualized by TBtools. GRAS: GRAS domain; DELLA: DELLA domain; bp: base pair. Lengths of exons and introns and domains of each
LcGRAS protein were exhibited proportionally. c Motif pattern of LcGRAS proteins. aa: amino acid
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genes (Additional file 1: Table S4). Target genes with
penalty score less than 5 and category less than 2 were
considered confident [41]. Thus, in total four members
(LcGRAS8, LcGRAS9, LcGRAS24, LcGRAS27) of LcGRAS
genes were identified as targets of miR171 (Fig. 5, Add-
itional file 1: Table S4). The miR171-mediated cleavages

were verified using degradome data, as presented in the
form of target plots (t-plots), showing the abundance of
cleaved tags relative to their positions in the transcripts.
For each miR171 targeted LcGRAS genes, a clear cleav-
age was detected at the target site of lch-miR171s (Fig.
5). All miR171 target sites were located at the fore end

Fig. 3 Genomic positions, duplication events and syntenic relationships of LcGRAS genes. Distribution of GRAS family genes on each
chromosome in litchi. LcGRAS genes likely resulted from tandem duplication events are highlighted in red, while those derived from segmental
duplication events are connected by orange lines. Gray lines represent syntenic blocks in litchi genome

Fig. 4 Synteny relationship of the GRAS genes from litchi, Arabidopsis, and rice. At1-At5, Lc1-Lc15, and Os1-Os12 represents five chromosomes of
Arabidopsis, 15 chromosomes of litchi, and 12 chromosomes of rice, respectively. Gray lines in the background indicate the colinear blocks
between three plant genomes (litchi, Arabidopsis, and rice), while blue lines highlight the syntenic GRAS gene pairs in three species (litchi,
Arabidopsis, and rice)
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of the GRAS domain (Fig. 5), and all miR171 targeted
LcGRASs belonged to the HAM subfamily, which were
supposed to function in meristematic cell development,
root length, and flowering [42–44].

Expression analysis of LcGRAS genes in different tissues
To investigate the role of these LcGRAS genes, RT-
qPCR was used to analyze the expression pattern of 48
LcGRAS genes in seven tissues, including root, stem,
young leaf, old leaf, male flower, female flower, and fruit.
As illustrated in Fig. 6, expression of 44 LcGRAS genes
was obtained, while four LcGRAS genes cannot be de-
tected because of their extremely low expression levels.
Most of the LcGARS genes were highly expressed in root
and old leaf and poorly expressed in either male or fe-
male flowers. In addition, most genes in LISCL were

highly expressed in fruit and old leaf, while some genes
were with rich expression in root, suggesting that func-
tional diversification was present in this subfamily.
LcGRAS46 in SCR, LcGRAS14 in SHR and almost all
genes in PAT1 subfamily were abundant in root (Fig. 6);
genes in DELLA subfamily (LcGRAS3, LcGRAS15,
LcGRAS41) were all highly expressed in fruit; LcGRAS2
(SHR) and LcGRAS47 (SCL3) were found to have higher
expression in stem (Fig. 6). We also found that gene
LcGRAS11 which belongs to litchi-specific subfamily L_
GRAS, was highly expressed in male flower (Fig. 6),
demonstrating it would be closely related to the male
flower development. In contrast, LcGRAS5, the sole
member of the LAS subfamily, was highly expressed in
female flower and fruit (Fig. 6), indicating its function in
the development of female flowers and fruits. Moreover,

Fig. 5 Target plots (t-plots) of identified miR171 targets in litchi using degradome sequencing. T-plots from degradome data were shown in each
panel, red lines indicate signatures consistent with miRNA-directed cleavage. The red vertical arrows point to the predicted cleavage sites. P: P-
vaule. The yellow and pink color indicate the CDS region and the GRAS domain of the gene, respectively
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Fig. 6 Relative expression of LcGRASs in seven tissues. Data from three independent biological replicates are shown with standard error (SE).
Different letters above the bars represent significant differences (P < 0.05, LSD) among seven tissues. The control used in the calculations was
male flower. The same background color represents members of the same subfamily
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LcGRAS25 (DLT) was of high-level expression in fruit,
stem and young leaf (Fig. 6), implying its potential func-
tion in fruit, stem, and young leaf development.

Expression profile of LcGRAS genes in two varieties with
contrasting seed size
To explore the character of LcGRASs in the regulation
of seed development in litchi, transcriptome analysis was
conducted on a litchi cultivar (‘NMC’) and a wildtype li-
tchi (‘WL10’), representing developing small (abortive)
and large (bold) seeds, respectively (Fig. 7a, Additional
file 1: Table S5). Seed samples at four developmental
stages, including globular-shaped embryo stage (15
DAA), heart-shaped embryo stage (25 DAA), torpedo-
shaped embryo stage (35 DAA), and cotyledon-shaped
embryo stage (45 DAA), were collected for RNA sequen-
cing. Pairwise comparison of the developing seeds
unmasked the common and exclusive differentially
expressed transcripts at 15, 25, 35, and 45 DAA between
the two varieties. Among 48 LcGRAS genes, 8, 12, 10
and 7 LcGRAS genes were differentially expressed
(‘NMC’ vs ‘WL10’) at 15, 25, 35, and 45 DAA, respect-
ively (Fig. 7b, c, Additional file 1: Table S6). Notably,
LcGRAS32 was consistently high expressed in abortive-
seeded cultivar (‘NMC’) during all four stages (Fig. 7b,
c), which suggested its potential function in embryo
abortive development, giving rise to small seed. The seed
development process in litchi could be divided into the
cell division stage and the filling stage around 28 DAA
when the embryo reached the heart-shaped embryo
stage with a rudimentary cotyledon. The cell division
stage before 28 DAA was more important for normal
seed development [45]. Intriguingly, LcGRAS29 and
LcGRAS40 were exclusively high accumulated in small-
seed during both globular-shaped embryo stage (15
DAA) and heart-shaped embryo stage (25 DAA), imply-
ing their possible function in seed abortion. In addition,
LcGRAS1 was specifically highly expressed in globular-
shaped embryo stage (15 DAA) while LcGRAS24 was
specifically highly expressed in the heart-shaped embryo
stage (25 DAA) (Fig. 7c), indicating that they may be in-
volved in cell division in seed development as well. Fur-
thermore, LcGRAS15, LcGRAS28 and LcGRAS48 were of
high expression in ‘WL10’ (bold-seeded) during torpedo-
and cotyledon-shaped embryo stages, suggesting these
genes may be linked with important traits during the fill-
ing stage of normal seed development (Fig. 7c).

Discussion
GRAS gene family has been characterized in several
plant species, and involved in numerous critical develop-
ment and physiological processes. In our study, 48
LcGRAS genes were identified in litchi (Fig. 1). The
population of LcGRAS members was larger than that in

Arabidopsis (33) [46], and roughly the same to that in P.
mume (46) [7], tomato (S. lycopersicum) (53) [11], castor
bean (R. communis) (48) [16], and pepper (C. annuum
L.) (50) [10], but less than in Populus (106) [14], rice
(57) [6], and cotton (Gossypium hirsutum L.) (150) [18],
implying extensive duplication and diversification of the
LcGRAS gene family among species. In the analysis of
the structural compositions of LcGRASs, we found 81.3%
of LcGRASs were intronless (Fig. 2), which was similar
to tomato (77.4%) [11] and P. mume (82.2%) [7]. Intron-
less genes have been discovered in gene families DEAD
box RNA helicase [47] and F-box gene family [48]. The
high proportion of intronless genes in litchi suggests that
they may have experienced intron loss events during
evolution, which is common in other eukaryotes [49].
Tandem and segmental duplication are the main mecha-
nisms for the expansion of plant gene families [50] and
play a crucial role in the adaptive response to environ-
mental stimuli [51]. Tian and colleagues [6] analyzed the
expansion mechanism of GRAS gene families in Arabi-
dopsis and rice. In litchi, six tandem duplication and
seven segmental duplication gene pairs were found (Fig.
3), these gene pairs in HAM, LISCL, L_GRAS and
DELLA subfamily are like other plant species [52]. Our
result indicated that duplication events may be a mech-
anism for expanding the number of GRASs in these sub-
families. In addition, LcGRAS1, LcGRAS11, and
LcGRAS12 of L_GRAS subfamily, a new subfamily iden-
tified in litchi, were also experienced the two types of
duplication events. These L_GRAS genes may possess
special function for the growth and development of li-
tchi, which need further researches. Moreover, some
gene pairs of the two duplication events had similar ex-
pression pattern in different tissues, as shown in Fig. 6,
which also existed between PmGRAS16 and PmGRAS26
in P. mume [7].
The analysis of expression patterns can facilitate our

depiction of the potential functions of GRAS genes [53,
54]. Genes in maize (ZmSCR) and rice (OsSCR) were
shown to have similar expression patterns to AtSCR in
roots [55, 56], and these two GRAS members (SCR and
SHR), were involved in several different stages of (root)
development [57]. GRAS protein from the PAT1 clade
was shown to be associated with the development of the
adventitious and lateral root [58, 59]. HAM clade of the
GRAS family was vital for root development but in-
volved in leaf development, with a triple-mutant (scl6,
scl22, and scl27) leading to reduced root growth and ab-
normal leaf patterning [44, 60]. In our study, four
LcGRAS genes were undetectable in all tissues, suggest-
ing a trend to degenerate these genes after gene duplica-
tion or the loss of gene functions during evolution. Most
of the LcGRAS genes were highly expressed in root, in-
cluding members in SCR, SHR, PAT1, and HAM
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subfamily, indicating they might function in root devel-
opment in litchi. Moreover, GRAS protein from the
HAM subfamily was supposed to participate in the vege-
tative to the reproductive phase transition by activating
the miR156-SPLs pathway [42, 61]. LcGRAS8, LcGRAS9,

LcGRAS24, LcGRAS27 from HAM subfamily were iden-
tified as the targets of miR171 (Fig. 5), and they shared a
similar expression pattern, suggested that the relatively
conserved functions of the miR171-GRASs regulatory
networks in litchi. The four genes especially highly

Fig. 7 Differential expression of LcGRAS genes between the abortive and bold seeded litchi. The heatmap was created based on the FPKM values
of LcGRASs from the transcriptome data. In the heatmap, orange and blue were represented higher and lower expression (log2 (FPKM+ 1)),
respectively. a Expression pattern of LcGRAS genes in both abortive and bold-seeded litchi at four development stages (N: ‘NMC’, W: ‘WL10’, 1:
globular-shaped embryo stage, 2: heart-shaped embryo stage, 3: torpedo-shaped embryo stage, 4: cotyledon embryo stage). b Venn diagram
showing number of differentially expressed LcGRAS genes (log2FC > 1; Padj < 0.01). c Differential expression profile of LcGRAS genes between
abortive and bold-seeded litchi at the four developmental stages. Scale bar in figures of 15DAAand 25DAA: 1 mm; Scale bar in figures of
35DAAand 45DAA: 2 mm
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expressed in both old leaf and fruit, which implied their
potential roles in leaf patterning, flower organ formation
[42] and fruit development in litchi [62–64]. Addition-
ally, several genes were prominently with higher expres-
sion in fruit, including three DELLA genes (LcGRAS3,
LcGRAS15, LcGRAS41), and LcGRAS25 in DLT subfam-
ily, which might be involved in the fruit development
through GA signal transduction pathway [65–68] or
brassinosteroid signal transduction pathway [69, 70],
respectively.
GA and auxin are prominently associated with the

seed formation during fruit development [71–73]. More-
over, some GRAS proteins function as regulators of
auxin and GA in plant development, such as fruit and
seed development. For instance, the overexpression of
SlGRAS7 enhancing GA/auxin signaling and improving
resistance to abiotic stresses [74]. SlGRAS24 was charac-
terized to impact multiple agronomical traits by regulat-
ing auxin and GA homeostasis in tomato [34].
Additionally, it is evident that SlGRAS40 acted as a regu-
lator of auxin and GA as the overexpression of
SlGRAS40 led to auxin insensitivity and GA deficiency
[75]. Moreover, overexpresseing SlGRAS24 or SlGRAS40
in plants would lead to pleiotropic phenotypes such as
reduced fruit set ratio, arrested fruit, and abnormal seed
development [34, 75]. SlGRAS24 and SlGRAS40 were
the target genes of miR171 and belonged to HAM sub-
family in tomato. Similarly, in litchi, there were 4 genes
of HAM subfamily targeted by miR171, which were
higher expressed in fruit, indicating miR171-GRAS regu-
latory pathway might play similar roles in seed and fruit
development like SlGRAS24 and SlGRAS40 through GA
signal transduction pathway. Expect that, in the
SlDELLA deficit model, the tomatoes exhibited GA in-
sensitivity and displayed a GA-constitutive response
phenotype, including parthenocarpy [66, 68]. In our
study, three DELLA genes (LcGRAS3, LcGRAS15, and
LcGRAS41) were higher expressed in fruit, indicating
their potential functions in fruit development through
GA pathway. PrSCL1 (Pinus radiata SCL1) and CsSCL1
(Castanea sativa SCL1) were shown to regulate adventi-
tious root formation through auxin signaling [76]. In
Arabidopsis, the collaboration between the SHR-SCR
complex and auxin influx carriers (LAX3 and AUX1)
could lead to synergistic effect on primary/lateral root
development [77]. In pine and cucumber, relatively high
expressing GRAS transcripts, such as SCR and SHR,
were measured in non-differentiated proliferating em-
bryogenic cultures and during embryo development [15,
78]. In our study, LcGRAS14 in SHR was highly
expressed in root, and LcGRAS48 was highly expressed
in fruit, indicating that LcGRAS members might function
in root and seed development by participating in auxin
signal pathway. Hence, based on their similar expression

pattern in different tissues and similar conserved do-
main, LcGRASs that belong to HAM, DELLA and SHR
were supposed to be involved in different developmental
processes via crosstalk with GA or auxin signaling.
‘NMC’ and ‘WL10’ are two litchi varieties that display

remarkable difference in seed size after maturity.
‘WL10’produces larger seeds with normally developed
embryos and cotyledons, while ‘NMC’, as the seed-
aborting cultivar, produces seeds with defect embryos or
cotyledons. It has been reported that 28 DAA repre-
sented a transition point between the cell division stage
and the filling stage during litchi seed development, after
which sequential liquid endosperm and embryo develop-
ment were not observed in ‘NMC’ [45]. In our result,
LcGRAS29 (SHR), LcGRAS40 (PAT1), LcGRAS1 (L_
GRAS) and LcGRAS24 (HAM) were exclusively and
highly accumulated in ‘NMC’ (abortive seed) before 28
DDA (Fig. 7c), indicating its exceptional function in
endosperm and embryo abortion of litchi. In addition,
LcGRAS15 (DELLA), LcGRAS28 (SHR) and LcGRAS48
(SCR) were up-regulated in ‘WL10’ (bold-seed) at
35DAA and 45DAA (Fig. 7c), which suggested that they
may work in later seed maturation. These genes might
participate in seed development by regulating auxin and
GA pathways.

Conclusions
In this study, 48 LcGRAS genes were identified in litchi
and divided into 14 subfamilies. Members of the same
subfamily have similar gene structures. Some LcGRAS
genes are derived from gene duplication. The expression
patterns of LcGRAS genes in different tissues were di-
verse, indicating that they might have different functions
during the development of litchi. Four LcGRAS genes
were regulated by miR171 directly. In addition, our re-
sult indicated LcGRAS genes are differentially expressed
in different varieties of litchi (‘NMC’ and ‘WL10’) and il-
lustrated crucial roles of LcGRAS proteins in embryos or
cotyledons development which affects seed size. This re-
search was the first comprehensive identification of
LcGRAS genes in litchi. These results provide the foun-
dation to elucidate the regulation mechanism of
LcGRASs in plant growth and seed size, showing that
LcGRASs might have important functions in litchi
breeding.

Methods
Plant materials preparation
Three 13-year-old ‘Huaizhi’ litchi (one of the main culti-
vars in China) trees used in our study were planted in
the orchard located at South China Agricultural Univer-
sity (Guangzhou, China). Different tissues, including root
(root tips approximately 10 cm long), stem, young leaves
(leaves approximately 3 cm long with yellow or light
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green color, and the tip of the leaves is red), mature
leaves (green but not leathery leaves), male flower (full
bloom), female flower (full bloom), and young fruit (31
DAA) were collected for RT-qPCR analyses. The 30-
year-old ‘NMC’ (cultivar litchi with abortive seeds) and
‘WL10’ (wildtype litchi with bold seeds) used in this
study were grown in the germplasm resource orchard of
Guangdong Province Fruit Research Institution
(Guangzhou, China). Seed samples of ‘NMC’ and ‘WL10’
used in RNA-seq analysis were collected in different de-
velopmental stages (15, 25, 35, and 45 DAA) from two
randomly selected trees. All samples were collected sep-
arately from three trees with similar growing conditions,
and then quickly frozen in liquid nitrogen and stored at
− 80 °C.

Identification and protein property analysis of LcGRASs
The Gtf/ Gff3 Sequence extractor in TBtools V1.046
[79] was used to extract the coding sequences (CDS) of
all GRAS genes from a reference litchi (‘Feizixiao’) gen-
ome of 15 pseudo-chromosomes (470Mb) with 96.2%
completeness (assembled in house, data unpublished
yet) based on the gene structure annotation information,
and then CDS sequences were translated into protein se-
quences using Batch Translate CDS to protein tool in
TBtools V1.046 [79]. Thirty-three GRAS protein se-
quences from Arabidopsis were downloaded from TAIR
(https://www.arabidopsis.org/browse/genefamily/gras_
genefamily.jsp) [5], which were used as baits to identify
potential GRAS genes in the litchi genome by BLAST
analysis with a relative sensitive cutoff (E-value set at 1e-
5) in TBtools V1.046 [79], the resultant protein se-
quences were then used as queries to search against the
UniportKB/Swiss-port (swissport) databases using the
BLASTP program with default parameters to avoid false
positives. The identified sequences were then validated
using CDD (http://www.ncbi.nlm.nih.gov/cdd/) [80] with
E-value threshold 0.01 and Pfam (http://pfam.xfam.org/)
[81] databases with default parameters. The ProtParam
tools from the ExPASy website (https://web.expasy.org/
prot-param/) [82] were used to obtain the sequence
length, predicted molecular weight, and predicted iso-
electric point of the identified GRAS proteins.

Phylogenetic analysis of LcGRASs, AtGRASs, and OsGRASs
GRAS genes of Arabidopsis thaliana and rice together
with the litchi GRAS genes were sued in phylogenetic
analysis. Thirty-three GRAS proteins from Arabidopsis
thaliana and 60 GRAS proteins from rice (Additional
file 1: Table S1) were downloaded from TAIR [5] and
PlantTFDB V5.0 (http://planttfdb.cbi.pku.edu.cn/) [83]
respectively. AtSCL16 (a putative pseudogene [46]) and
some members in rice (protein length is less than 350 aa
[11]) were excluded in the subsequent analysis. Multiple

protein sequence alignment was carried out via Muscle
[84], and the poorly aligned regions were removed by
TrimAL 1.3 in TBtools V1.046 with default parameters
[79]. Phylogenetic analysis was performed by MEGA7.0
program by maximum likelihood (ML) method and the
bootstrap test was carried out with 1000 iterations [85].

Gene structure, domain, and conserved motif analysis
Introns and exons of each LcGRAS gene were analyzed
using TBtools V1.046 [79]. The conserved domains were
defined using the Batch-CD search (http://www.ncbi.
nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) [86, 87] with
default parameters. The MEME-Suite 5.1.1 online pro-
gram (http://meme-suite.org/) [88] was used to analyze
the conserved motifs to investigate the structural differ-
ences among LcGRAS members. All results above were
visualized by TBtools V1.046 [79].

Chromosomal distribution and gene duplication of
LcGRAS genes
The physical location information was obtained from the
litchi gff3 file and plotted by TBtools V1.046 [79]. Mul-
tiple collinear scanning toolkits (MCScanX) with default
parameters were used to analyze gene duplication events
[89]. The syntenic relationship between LcGRASs,
AtGRASs, and OsGRASs was determined using
MCScanX and visualized by multiple synteny plot tool
in TBtools V1.046 [79].

Identification of transcripts targeted by miRNAs
Six sRNA and four degradome data sets of litchi (L. chi-
nensis Sonn.) were downloaded from accession number
GSE98698 which were stored in NCBI [90]. An in-house
software, sRNAminer, was used to monitor quality, trim
adaptor, and collapse reads with the same sequence of
sRNA sequencing data [91]. Subsequently, noncoding
RNAs (including rRNA, snoRNA, and tRNA) and sRNAs
from chloroplast and mitochondrial genome were re-
moved by mapping against RNA Family (Rfam) database
V13.0 [92, 93] and the Plant organelles database [94] via
bowtie [95] respectively. Preprocessed reads were mapped
to the litchi genome and used to explore miRNAs. Cleve-
land 4.0 was adopted to identify transcripts targeted by
miRNAs and authentic target sites with a confident level
of category 0–2 and penalty score no more than 5 [96]
were screened. All degradome reads on cleave sites were
normalized to reads per 10 million (RPTM).

Expression analysis of LcGRAS genes by RT-qPCR
Total RNA was extracted using the Hot borate method
described by Wan and Wilkins [97], the cDNA strand
was synthesized with the HiScriptII Q RT SuperMix for
qPCR (+gDNA wiper) (Vazyme Cat No. R223-01). RT-
qPCR was performed with GoTaq® qPCR and RT-qPCR
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Systems (Promega Cat No. A6001) using a Light Cycler
480 Real-Time PCR Detection System (Roche, Rotkreuz,
Switzerland). Primers of LcGRASs, and two reference
genes GAPDH and EF [98] were designed by Primer
Premier 5.0 (Additional file 1: Table S7). Each expres-
sion profile was independently verified in three bio-
logical replicates. The relative expression level of each
gene was calculated by the 2-△△Ct method [99].

RNA-seq and differential expression analysis
The transcriptomic data were generated from different
seed development stages (15, 25, 35, and 45 DAA) of
two species of litchi (‘NMC’ and ‘WL10’). Trimmomatic
software was used to control the quality of raw RNA-seq
data and remove the adapter [100]. Afterwards STAR
software was used to map clean data to the litchi gen-
ome and the expression level of transcripts was normal-
ized into fragments per kilobase of transcript per million
fragments mapped (FPKM) by StringTie [101, 102]. Dif-
ferentially expressed genes were identified using an R
package, DESeq2 [103], where adjusted P-value (Padj) <
0.01 and foldchange > 2 were set as thresholds. In detail,
we took the average of the two biological replicate
counts of each sample, and then divided the average
counts of all the two sets of samples to be compared
with each other to get the fold change value (FC). Lastly,
took the logarithm of 2 for the obtained fold change,
next got log2FC (log2 fold change). If the log2FC value
of a gene was greater than 1, and the Padj was less than
0.01, the gene would be significantly up-regulated. Cor-
respondingly, if the log2FC value was lower than - 1,
and the Padj was less than 0.01, the gene was considered
to be significantly down-regulated.
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