Cloning and characterisation of two genes for 3-hydroxy-3methylglutaryl coenzyme A reductase and their possible roles during fruit development in *Dimocarpus longan*

By RUI XIA^{1,2}, WANG-JIN LU¹, ZE-HUAI WANG¹ and JIAN-GUO LI^{1*} ¹College of Horticulture Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, P. R. China ²Alson H. Smith, Jr. Agricultural Research and Extension Center, Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 22602, USA (e-mail: jianli@scau.edu.cn) (Accepted 26 September 2010)

SUMMARY

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC: 1.1.1.34), encoded by multiple genes in eukaryotes, is known to catalyse the first committed step in the mevalonic acid (MVA) pathway for the biosynthesis of isoprenoids, and has been implicated in fruit size determination. To elucidate whether the genes for HMGR are involved in the regulation of fruit growth in longan (*Dimocarpus longan*), we cloned two sequence-distinct HMGR genes, designated *DlHMG1* and *DlHMG2*, respectively. Sequence analyses revealed that they shared a high level of sequence and domain conservation, with homologues identified in other species at both the nucleotide and amino acid levels. Gene expression analysis showed that the two genes were differentially regulated in the pericarp, arils, and seed, as well as during fruit development. *DlHMG1* was up-regulated particularly in Phase I [0 – 42 d after anthesis (DAA)] and at the early stage of Phase II (42 – 56 DAA), followed by down-regulation in Phase III (\geq 56 DAA); while *DlHMG2* was expressed constitutively in the pericarp and arils, but fluctuated periodically in seed tissues during fruit development. The possible roles of *DlHMG1* and *DlHMG2* in the regulation of longan fruit size and growth are discussed.

ongan (Dimocarpus longan), with its unique flavour and high nutritional value, is recognised as one of the most valuable commercial fruits cultivated in southern China. However, lack of a uniform fruit size in most varieties compromises its quality and commercial value. It has been reported that the key factor that determines fruit size is cell number, rather than cell volume, in most fruits (Cowan et al., 2001; Olmstead et al., 2007). Any factors that affect cell division activity and processes should therefore play a role in the determination of fruit size and shape. Recently, genes coding for 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC: 1.1.1.34) were reported to be involved in fruit development through the regulation of cell division (Cowan et al., 2001). HMGR genes that belong to a gene family have been characterised extensively in numerous species, including Arabidopsis thaliana (Caelles et al., 1989; Enjuto et al., 1994), tomato (Narita and Grussem, 1989), rice (Nelson et al., 1994), corn (Stermer et al., 1994), wheat (Aoyagi et al., 1993), Salvia miltiorrhiza (Liao et al., 2009), apple (Rupasinghe et al, 2001), Camptotheca acuminate (Maldonado-Mendoza et al., 1997), rubber (Chye et al., 1992), and Taxus media (Liao et al., 2004). HMGR activity has been found to be associated with cell division in many fruits, including tomato (Narita and Grussem, 1989), avocado (Cowan et al., 1997), melon (Kato-Emori et al., 2001), and apple (Rupasinghe et al., 2001). Direct evidence for HMGR being an important regulator of fruit size was

obtained through transgenic plant research. Overexpression of a melon *HGMR* gene in tomato greatly stimulated cell division activity, leading to the production of much larger fruit in transgenic plants compared to fruit in wild-type tomato plants (Kobayashi *et al.*, 2003).

HMGR activity and function are highly conserved in eukaryotes, and the biochemical properties of the enzyme have been fully elucidated. HMGR catalyses the conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate (MVA; Caelles et al., 1989; Goldstein et al., 1990), the first committed step in cytosolic isoprenoid biosynthesis (Goldstein et al., 1990; Campos and Boronat, 1995). The reaction is irreversible and is considered to be the rate-limiting step in the biosynthesis of isopentenyl pyrophosphate (IPP) (Chappell, 1995; Rupasinghe et al., 2001). Isoprenoids are widespread in eukaryotes and are a large and diverse group of compounds with different structures (Langer et al., 2000). They are derived from the common precursor, IPP, and represent many major vital compounds that are involved in a wide range of primary and secondary pathways of metabolism in plants. For example, three of the five major groups of growth regulators (i.e., abscisic acid, gibberellins, and cytokinins), as well as chlorophylls and plastoquinone in photosynthesis, carotenoids in photo-protection, and some phytoalexins and steroids required for the assembly of biological membranes, are isoprenoids that are essential for plant growth, development, and defence (Stermer et al., 1994; Cowan et al., 1997).

^{*}Author for correspondence.

In this study, we have isolated and characterised two HMGR genes (*DlHMG1* and *DlHMG2*) from longan (*Dimocarpus longan*), in order to understand the roles of these genes in the regulation of longan fruit development and size determination, which are major concerns for longan fruit production. We found that *DlHMG1* was specifically up-regulated in the early stages of fruit development, while *DlHMG2* was not, implying that *DlHMG1* may be a key regulator of fruit growth, as has been demonstrated in other species.

MATERIALS AND METHODS

Materials

Three 7-year-old 'Linglong' longan plants (*Dimocarpus longan*), grown in the orchard of South China Agricultural University, were used for tissue collection. Fruit collection started 14 d after anthesis (DAA), followed by weekly collections until the fruit were ripe. Ten fruit, located on different panicles on each tree, were labelled for monitoring fruit stage and size development. Ten-to-twenty fruit, of sizes similar to the labelled fruit, were collected from each tree and immediately stored in an icebox before dissection into pericarp, aril, and seed tissues, each of which were weighed and stored at –80°C in a freezer.

Total RNA extraction and preparation of cDNA

Total RNA was isolated from approx. 10 g of each type of frozen fruit tissue using the hot borate method (Wan and Wilkins, 1994; Lu and Jiang, 2003). RNA was reversetranscribed using 10 Units Reverse Transcriptase (XL AMV; TaKaRa, Dalian, P. R. China) and oligo(dT) primer. Degenerate primers were designed for cloning the longan HMGR genes according to the methods and principles described by Xia et al. (2006). PCR for amplification of a DlHMG1 DNA fragment was conducted using total cDNA as template with the forward primer (5'-GGTTACGAGTATTGGGTTCCT atggcnacnac-3'; GREYSVPMATT) and the reverse primer (5'-GAACTCTCAACATTTTGTGCAggttcyt gncc-3'; for the corresponding amino acid sequence GQDPAQNVESS). For DlHMG2, PCR amplification used the forward primer (5'-CTTCTTTTATTTATC TGCTGGGCttytkyggnatc-3'; SFIYLLGFFGI) and the reverse primer (5'-CCCTTAGAAACCATATTCATA cccatngcrtc-3': DAMGMNMVSKG). Both PCR amplifications were performed in total volumes of 50 µl containing 5 μ l 10 \times *Ex* PCR buffer, 4 μ l dNTP mixture, 2 µl forward primer (10 µM), 2 µl reverse primer (10 μ M), 2 μ l cDNA, and 5 Units *Ex Taq* DNA polymerase (TaKaRa). The same protocol, consisting of 35 amplification cycles [94°C for 1 min, the T_m (annealing temperature) for 1 min, and 72°C for 1 min] was used to amplify both genes, except that the T_m was 58.5°C for DlHMG1 and 56°C for DlHMG2. Two fragments of the expected sizes (700 bp for DlHMG1 and 800 bp for DlHMG2) were obtained and cloned into the vector, pMD 18-T (TaKaRa). Both fragment sequences were determined (Invitrogen, Shanghai, P. R. China) and searched against the Genbank database at the NCBI (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/) using BLASTX to confirm the sequences.

Gene-specific primers for each gene fragment (5'-AGGTGGTGAAGAAGGTGTTG-3' and 5'-CTTACT GGCTCTGCTGTTGC-3' for DlHMG1; and 5'-TTTTC CTGGAGAATCCTGCC-3' and 5'-TTGGAAGGC TTCAGAACATC-3' for *DlHMG2*) were then designed and used for 3'-RACE analysis (3'-Full RACE Core Set Version 2.0; TaKaRa) according to the manufacturer's instructions. 5'-RACE was carried out using a modified TDT (terminal deoxynucleotidyl transferase)-tailing method (Xia et al., 2008). cDNA was obtained by reverse transcription using a short gene-specific primer (5'-GACGGACGACAA GAC-3' for DlHMG1; or 5'-TCGTCCTCGCTGGTA-3' for DlHMG2). The nested-PCR strategy was used for amplifications with the genespecific primers (5'-TTTCGGCAACGGAGTAGGCG-3' and 5'-CGTGAG ATGAAGGACTGGAC-3' for DlHMG1; and 5'-CTTA GCCGTGACGAGAGAGC-3' and 5'-CCACATTTCG GAGGAGGGAC-3' for DlHMG2). The amplified bands were cloned and sequenced, as described above.

Sequence analysis

Full-length cDNA sequences for *DlHMG1* and *DlHMG2* were assembled through sequential ligation and cloning, and verified by DNA sequencing. Multiple sequence alignment analysis was performed using ClustalW (http://www.ebi.ac.uk/clustalw/). A phylogenetic tree was then constructed by the neighbour-joining method based on the Phylip programme (http://bioweb. pasteur.fr/phylogeny/intro-en.html)

Northern blot analysis

DIG-labelled gene-specific probes were generated using a PCR-based DIG labelling kit (Roche Diagnostics, Mannheim, Germany) with the primers (5'-AGAGACATGACCGAAGCCGC-3' and 5'-GCTCTC AGGTCGTGACAAGG-3' for DlHMG1; 5'-ATTGAG GTTGGCACAGTTGG-3' and 5'-CCAGGACTGAAG GGGCTATT-3' for DlHMG2) designed following the manufacturer's instructions. Total RNA ($10 \mu g$) from each sample was separated by electrophoresis in a formaldehyde-treated 1.2% (w/v) agarose gel, blotted onto a PVDF membrane (Biodyne B; 0.45 µm; PALL, New York, USA), and immediately fixed to the membrane by baking at 80°C for 2 h, followed by UV cross-linking (Amersham Life Sciences, Amersham, UK). Pre-hybridisation of the membrane was carried out in high-SDS buffer [7% (w/v) SDS, $5 \times$ SSC, 50 mM sodium phosphate (pH 7.0), 2% (w/v) blocking reagent (Roche Diagnostics), and 0.1% (w/v) N-lauroylsarcosine, in 50% (v/v) deionised formamide] for at least 3 h, followed by hybridisation with each DIG-labelled probe at 45°C for 16 h in the same buffer. The blots were washed twice in $2 \times$ SSC containing 0.1% (w/v) SDS at 37°C for 10 min, and twice with $0.1 \times$ SSC including 0.1% (w/v) SDS at 62°C for 30 min before hybrid signal detection by chemiluminescence using CDP-Star (Roche Diagnostics).

RESULTS AND DISCUSSION

Isolation and characterisation of the DIHMG1 *and* DIHMG2 *genes*

In all plant species analysed so far, HGMR is encoded by a multigene family (Campos and Boronat, 1995), but the number of genes in the family varies from species-to-species (Chappell, 1995). Using PCR amplification, in combination with 5'- and 3'-RACE analyses, we isolated two sequence-distinct HMGR genes in longan, called *DlHMG1* and *DlHMG2*, respectively. *DlHMG1* cDNA (2,235 bp in length), consisted of a 56 bp 5'-untranslated region (5'-UTR), a 1,695 bp open reading frame (ORF), and a 484 bp 3' untranslated region (3'-UTR; Figure 1A). *DlHMG1* encoded a putative polypeptide of 564 amino acids. Similarly, *DlHMG2* cDNA (Figure 1B) had a 133 bp 5'-UTR, a 1,707 bp ORF, and a 359 bp 3'-UTR. The *DlHMG2* ORF encoded a putative polypeptide of 568 amino acids, which was four amino acids longer than DlHMG1.

A BLASTX search against GenBank showed that DlHMG1 shared \geq 75% sequence identity with other HMGR proteins in many species, but the highest level of identity (94%) was with litchi (*Litchi chinensis*) HMGR (ABF56518). DlHMG2 appeared to be less conserved in plants than DlHMG1, and the highest level of identity was with the *Gossypium hirsutum* HMGR (O64967) at approx. 74%. Sequence alignments between the DlHMG1 and DlHMG2 proteins revealed approx. 73% sequence identity, indicating substantial sequence divergence during evolution. Thus, our results indicate that longan plants contain at least two HMGR genes, or homologues, in their genome.

A

1	$\frac{ttttcaatttgttattttagtcctctcaaaatcgagtttcggcgaaagtcgaata}{atagagttcggcgaaggtcgaata}$														a															
57	atgracgtccgccgacggcctccgaagccgtcacgtgtcgccgacgatgaacagcgtactacgacgccgtctccgcagtgccgcaagacg															a														
	M	D	V	R	R	R	Р	Р	Κ	Р	S	R	V	А	D	D	Е	Q	R	Т	Т	Т	Р	S	Р	Q	S	Р	K	А
147	tca	gat	gett	tgc	cgc	tgc	cac	tat	acc	taa	cga	acg	cca	ttt	tct	tca	cgc	tct	tct	tct	cgg	tgg	cgt	act	tcc	tgc	tac	aca	ggt	gg
	S	D	А	L	Р	L	Р	L	Y	L	Т	Ν	А	Ι	F	F	Т	L	F	F	S	V	А	Y	F	L	L	Н	R	W
237	cgc	gaca	aga	itee	gta	gct	cga	cgc	ctc	tcc	acg	tcg	tca	ctc	tct	ctg	aaa	tcg	ccg	cca	ttg	tct	ccc	tca	tcg	cet	ctt	tca	tct	ac
	R	D	K	Ι	R	s	S	Т	Р	L	Н	v	V	Т	L	s	Е	I	A	А	I	V	S	L	I	А	S	F	Ι	Y
327	ctt	cter	get	tet	tcg	gca	tag	act	ttg	tcc	agt	cct	tca	tct	cac	gcg	cct	cca	atg	acg	cgt	ggg	atc	tag	acg	acg	agg	ctg	caa	сс
	L	L	G	F	F	G	I	D	F	V	Q	S	F	Ι	S	R	А	S	Ν	D	Ā	W	D	L	D	D	Е	Α	А	Т
417	gtc	atts	zecz	etc	gtc	ctc	cgc	cta	ctc	cgt	tgc	cga	aac	tgg	tcg	ctc	ctc	ccg	age	cga	taa	tat	ctg	tet	tgt	cgt	ccg	tcg	aag	at
	v	I	A	A	R	Р	Р	Р	Т	Р	L	Р	К	L	v	А	Р	Р	E	Р	Ι	Ι	s	V	L	s	s	v	Е	D
507	gag	aaga	atce	rtga	agt	cgg	tcg	tgg	acg	get	 cga	tte	cgt	cgc	act	cgc	t.gg	agt		age	tcg	- 999	act	gta	ааа	- gag	cgg	ctc	tga	tt.
	E	K	I	V	K	-88 S	V	V	D	G	S	T	P	s	Н	S	L	E	S	K	L	6000 G	D	C	K	R	- 88 A	A	L	T
591	7 cg	acgi	7889	Igc.a	rc tg	cag	aca	gtg	act	- ggt	- aga	tca	ctg	cag	 999	ctg	ccg	tte	gat	ggc.	tte	gat	tat	- gag	tcg	atc	cag	999	cag	tge
	R	R	K	A	L	Q	Т	V	Т	60 ·	R	s	L	Ω	G	L	P	L	D.	- 60 G	F	D	Y	E	s	T	۵. ۵	G	Q	C
687	tge	gaar	atgo	cgg	rttø	gtt	acg	tge	aga	tte	cgg	tgg	gaa	tcg	- ccg		ctc	tgc	ttt:	tag	acg	- ggt	tcg	agt	att	- cgg	tte	caa	tgg	ca
		R	M	P	v	G	v	v	۵.	т	P	v	6	T	Δ	6	р	1	I	1		6	F	F	v	-88- S	v	р	- 88 M	Δ
777	900	-		• 	att	taa	- + t a		•	-	•	 	act				tet		cet		ata	aca	cct		cta	tac	tat	tσ9	 	
	T	T	R	C.	c	L	V		sce s	A	N	R	вст С	gcu C	866 R	Δ.	I	v	4	s s	с. С	всв С	Δ	s	т	V	I	I	K K	п
867	aat	• •nte			ete	et a		t ra	aat	***					, n n a m	eta	1	ı ant	n taa	ant	tet	tet	 t a a		atc	, cta		att	tea	0 T
001	650	M	Т	R	Δ	с св	v	V	R	F	s	т	Δ	K	R	Δ	Δ.	F	I	K	F	F	I	F	n	р	N	N	F	n
957	90.9	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rete	nt a a		1 ++ 9	• •		с л э	rt a	aac	1 11a		aac	tte	 		tte	aat	n act	ı cta	++ a	cta	па а		at c	tet	90.9	ı cta	
301	аса	LLAN I	ςς τ _έ Λ	v	v	E	N	D	cga	gta c	ggc D	T	A	pggc	T I	gaa D	gca c	T	aat;	ge i C	c ta	T	A	gaa C	aga V	N	ICL	v	т	BR D
104	,					г. 		ĸ				Ľ		IX.				1	*						к - + +	18	Ľ.			
104	г ц Б	LLG	c i gi	age	acg.	ggı	gac	gee	atg.	ggg C	atg M	aac	atg M	guu	c c	uaa v	gga	guu v	caa	aa t N	gii v	CUL I	gat	E	i i	caa	aac.	gat	v	р
1197	г 7									G		N		v		ĸ			4	18				г	L.	4	IN		1	г
115	r ga	сац	gau	gu	т	gga	ата	e c	gga	aac	E	rg t	c c	gac D	aaa v	uaa v	D D	ge t	get;	gta v	aat	w	т	gaa	888	Cg L	ggi	aaa v	cca;	gu v
100'	7	M	U	· · ·	1			3	6	19	г	C			л + + -	ĸ	r		A		19	"		E		л 	6			
1221	r gi	LLGO	:gag E	gei	ата т	атс	aag	gaa	gag	gug v	g tg	aag	aag v	gig v	t tg	aaa v	т	aac;	g ta;	ge t	c c	ita i	guu v	gag E	cu i	M	atg M	etca	aag	aao M
1917			. Б		1		ĸ		ь.		· .	ĸ	к 	· · ·	ь.	к 							· · ·	ь 			м			
101	1 00	т	rggu	e	.gct	gui v	gcc A	ggi	gcc A	L L B	ggi	gga	E	M	gcc.	п	get;	gee.	N	τ	y UC	e	gca	т	v	i i	gee A	T	ggu	Lai
140	ь 7 т.		G	3	A		A		A				г	- 15	- A	п 	-A	A	18	1	v			1	1	ь. 				¥
140	r ga	D	ggca A	icaa	N	guu v	gag	agı	. c	сат	rgc c	т	acc T	atg M	atg. M	gaa E	get:	gic.	aat;	gac n	ggg	agg	gat D	ilg.	сат п	gii v	c c	gta:	т	ац м
1.407	,	r	A	ų	IN		E			п 		1		M	м	E t t t			18			R.		L.	п 					31
149	CC D	atco	att	gag	gtg	ggt	aca	gtt	ggt:	ggt	ggt A	act	caa	ctc	gca	tet c	caa	tct;	gct	tgc	ctg	aat	ttg	ctg	ggt	gtg	aag	ggt	gca	age
15.07	, P	5	1	Е	v	G	1	•	G	G	G	1	4	L	A	5	Q.	. 5	A		L	IN	L	L	. 6	, v	ĸ		А	5
198	aa v	aga	gtca	ICC8	igga	tca	aat	gct	agg	ctc	ttg	gcc	act	att	gta	gct.	ggt	tca	gtc	ctg	gca	ggg	gag	ctc	tcc c	gtg	atg	tet	gcc	at
		E	5	P	G	5	IN	A	к	L	L	A	1	1	. V	A	G	5	, v	L	A	6	E	L	5	, v	м	5	A	1
1677	(gc	agc1	tggt	cat	ctt	gtc	aga	agt	cac	atg	aaa	tac	aac	aga	tcc	agc	aga	gac	atg:	acc	gaa	gcc	gca	tca	tag	atg	gag	atg	tga	ac
	A	A	G	Н	L	V	R	S	Н	М	K	Y	Ν	R	S	S	R	D	М	Т	Е	А	А	S	*					
	ag	aaa	taaa	att	caa	gag	aaa	ggt	gga	cac	aat	gta	ccg	gag	gtg	gaa	gaa	agc	aaa	aat	gta	aaa	tct	att	ggt	aac	agt	gct	tgt	gta
	gc	tgta	aaa	lage	ggg	aag	agg	cat	ata	acg	tgg	cta	gct	gtg	ccg	tct	ttc	ttg	ctg	gtg	agt	cgg	ttg	tca	cca	tct	ctg	acc	tgg	tt
	ca	acci	ttgt	cac	gac	ctg	aga	gcc	ggg	agg	acg	ccc	tcc	aat	att	tga	tct	atg	ttg	tgt	tga	aat	tgt	gaa	agt	tct	gtc	tgt	cct;	gte
	tt	tte	ttgt	tag	cag	ctg	tta	tat	att	cta	tgt	ttg	tag	ttg	ggg	acc	gga	gtc.	ggg	gag	tct	cag	agc	gca	ttt	gac	cgt	tte	cat	gte
	tt	ttt	tett	ttt	gag	ttt	ccg	ttt	gct	ata	taa	gat	att	caa	gat	tgt	gac	ctc	ccc	ata	att	gaa	ttg	gta	aca	tga	tct	aaa	tcc	ta
	99	ctaa	aaa	iaaa	iaaa	aaa	a																							

Sequence alignment and phylogenetic analysis

Multiple sequence alignments between DlHMG1 and DlHMG2 and ten other plant HMGR proteins were performed using the ClustalW programme (Figure 2). Similar to other plant HMGRs, DlHMG1 and DlHMG2 contained four conserved regions (domains), defined as the N-terminal region, a membrane domain, a linker region, and a catalytic domain (Figure 2A; Monfar et al., 1990; Campos and Boronat, 1995; Rupasinghe et al., 2001). Among these, the membrane and the catalytic domains were highly conserved, whereas the N-terminal and the linker regions were highly divergent, both in length and in amino acid sequence (Campos and Boronat, 1995). The existence of two highly-conserved hydrophobic sequences (H1 and H2) in the membrane domain suggested that both these HMGRs were targeted to the endoplasmic reticulum (ER; Caelles et al., 1989; Campos and Boronat, 1995). Two HMG-CoA binding motifs [EMPV(I)GYVQV(I)P and TTEGCLVA] and two NADPH-binding motifs (DAMGMNM and GTVGGGT) were highly conserved in the catalytic domain (Figure 2B; Wang et al., 1990; Liao et al., 2004; Istvan and Deisenhofer, 2000). Most plant HMGRs contain a MetAsp/GluXArgArgArg motif [MD/EXRRR (where X can be Val, Leu, Ile, or Pro)] at their Nterminus, which might anchor the proteins in the ER (Campos and Boronat, 1995). These results strongly suggest that DlHMG1 and DlHMG2 could be

в

1		a a a a a ctca a ccg a a ttta a ta a ta														c														
44	acci	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$															a													
134	atg	gago	cto	gcc	ggca	gate	ccgo	cgt	cca	agc	aat	ctc	atc	tcg	atg	cga	agg	ccc	tcg	atg	gca	cga	cga	agg	cgt	cgg	acg	cgc	tgcc	t
	M	E	P	R	R	R	S	А	S	K	Q	S	Н	L	D	А	К	А	L	D	G	Т	Т	Κ	А	S	D	А	L	Ρ
224	ctg	ccgc	tct	aca	taac	gaa	icgo	ggt	ttt	tcc	tca	cgc	tct	tct	tca	cgg	tgg	tgt	act	acc	tge	tct	cgc	gat	ggcı	ggg	igaa	aggt	ccg	g
	L	Р	L	Y	Ι	Т	Ν	А	V	F	L	Т	L	F	F	Т	V	V	Y	Y	L	L	S	R	W	R	Е	Κ	V I	R
314	acg	tcga	icgc	cgc	tcca	icgt	ggt	gad	eta	tgt	cgg	aga	tgg	gtg	cca	tcg	tgg	cgt	tcg	tgg	cgte	cct	gca	tct	acc	tgc	tcg	gett	ctt	с
	Т	S	Т	Р	L	Н	V	V	Т	M	S	Е	М	G	А	Ι	V	А	F	V	А	S	С	Ι	Y	L	L	G	F	F
404	ggg	atcg	act	tcg	tgca	gtc	act	teet	tet	tcc	gtc	cct	cct	ccg	aaa	tgt	gga	cgg	aag	aag	agga	atg	agg	tta	tca	tca	igga	aga	ttc	g
	G	Ι	D	F	V	Q	S	L	L	F	R	Р	S	S	Е	М	W	Т	Е	Е	Е	D	Е	V	Ι	Ι	K	Е	D	s
494	agg	cagt	tgc	ctt	gtgg	faca	iggo	cct	tega	att	gct	ctc	tcg	tca	cgg	cta	agc	ctg	tca	aag	tca	tcg	aaa	cgg	tge	gg	ttte	cett	tac	с
	R	Q	L	Р	С	G	Q	А	L	D	С	S	L	V	Т	А	Κ	Р	V	Κ	V	Ι	Е	Т	V	Р	V	S	F	Г
584	age	gagg	acg	acg	agga	igat	agt	igaa	agto	gg	tgg	tgg	agg	gga	cga	cgc	cgt	cct	act	cgt	tgga	agt	cga	agt	tgg	gaga	itt	zcaź	gag	g
	S	Е	D	D	Е	Е	Ι	V	K	S	V	V	Е	G	Т	Т	Р	S	Y	S	L	Е	S	Κ	L	G	D	С	R	R
674	gcg	gcgg	gca	tac	ggcg	gga	igge	gti	tgca	aga	ggt	tga	cgg	gga	aat	ctc	tgg	cgg	gtc	tgc	ctt	tgg	atg	gtt	tcg	acta	icga	agto	cat	t
	Α	А	G	Ι	R	R	Е	Α	L	Q	R	L	Т	G	K	S	L	А	G	L	Р	L	D	G	F	D	Y	Е	S	Ι
764	ctg	gggc	agt	gct	gega	igat	gcc	etgi	tgg	gtt	atg	tgc	aga	ttc	cgg	tgg	gga	ttg	cgg	ggc	ctt	tgt	tgc	ttg	acg	gga	gg	agti	ctc	a
	L	G	Q	с	С	E	M	P	v	G	Y	V	Q	I	P	V	G	I	A	G	Р	L	L	L	D	G	Т	E	F	S
854	gtt	ccga	itgg	cga	ccad	gga	agg	gt	get	tgg	tgg	cca	gta	cta	ata	ggg	gtt	gta	aag	cca	ttca	act	tgt	ctg	gtg	ggg	ette	caag	tgt	t
	V	Р	М	А	т	Т	E	G	С	L	V	A	S	Т	Ν	R	G	С	К	А	Ι	Н	L	S	G	G	А	S	S	V
944	gtg	ttta	igag	atg	gcat	gac	aag	age	etce	ctg	ttg	tca	ggt	ttg	gga	ctg	cca	aaa	gag	ctg	ctga	agt	tga	agt	ttt	tcc	tgga	agaa	itce	t
	v	F	R	D	G	М	Т	R	А	Р	v	V	R	F	G	Т	А	K	R	A	A	Ē	L	K	F	F	L	Ē	N	Р
1034	gc	caat	ttc	gaa	acto	tgt	cts	tca	att	ttc	aac	aaa	tcc	agt	agg	ttt	gga	agg	ctt	cag	aaca	atc	aaa	tgt	gega	att	get _i	gca	aga	at
	A	Ν	F	E	Т	L	s	v	Ι	F	Ν	К	S	s	R	F	G	R	L	Q	Ν	Ι	К	с	A	Ι	A	G	ĸ	N
1124	ct	ctac	att	agg	ttet	gtt	gca	igca	aca	ggt	gat	gct	atg	ggg	atg	aac	atg	gtc	tcc	aag	ggt	gtc	cag	aac	gtta	atg	gati	tace	tcc	ag
	L	Y	Ι	R	F	С	С	S	Т	G	D	A	M	G	M	N	M	V	S	К	G	V	Q	Ν	V	М	D	Y	L	Q
1214	ga	agag	ttc	cct	gaca	itgg	ats	tca	att	ggc	att	tct	ggt	aac	ttc	tgc	tcc	gac	aag	aag	cct	gca	gca	gtg	aac	tgg	itt	zaaş	ggc	gt
	Ē	Е	F	Р	D	М	D	v	Ι	G	Ι	S	G	Ν	F	c	S	D	К	ĸ	Р	A	A	v	Ν	W	Ι	Е	G	R
1304	gg	caag	tct	gtg:	gtti	gtg	agg	ge ta	ataa	ata	aag	ggt	gat;	gtg	gtg	agg	aag	gtt	ttg	aag	acta	aat	gtg	gag	gtc	ttg	gttį	zago	tca	ac
	G	Κ	S	V	V	С	Е	А	I	Ι	Κ	G	D	V	V	R	Κ	V	L	Κ	Т	Ν	V	Е	V	L	V	Е	L	N
1394	at	gete	aag	aac	ctta	ictg	gct	tetş	gtta	atg	gcc	gga	gct	ctt;	ggt	ggc	ttc	aat	gct	cat	gcca	agt	aac	att	gtta	act	ge t į	gtci	act	ta
	М	L	Κ	Ν	L	Т	G	S	V	М	А	G	А	L	G	G	F	Ν	А	Н	А	S	Ν	Ι	V	Т	А	V	Y	L
1484	gc	cact	ggt	caa	gate	ctg	cto	aga	aata	gtc	gag	agc	tct	cac	tgc	at	cac	tat	gat	gga	ggco	cgt	taa	tga	tgg	caa	ggad	ctt	cat	gt
	А	Т	G	Q	D	Р	А	Q	Ν	V	Е	S	S	Н	С	Ι	Т	М	М	Е	А	V	Ν	D	G	K	D	L	Н	V
1574	te	cgto	act	atg	cett	cta	itte	zag	gttø	ggc	aca	gtt	gga	ggt	ggc	aca	cag	ctt	cct	tct	caa	tca	gct	tgt	ttga	aate	eta	ettø	ggg	tc
	S	v	Т	М	Р	S	I	Е	v	G	Т	V	G	G	G	Т	Q	L	Р	S	Q	S	A	С	L	Ν	L	L	G	V
1664	aa	gggt	gcc	age	agas	agg	tac	ca	ggt	gca	aac	tca	agg	ctt	ctg	gcc	acc	att	gta	gct	ggt	tct	gtt	ctt	get	zggi	tage	etgi	cgc	tc
	К	G	A	s	R	E	v	P	G	A	Ν	s	R	L	L	A	Т	Ι	v	A	G	S	v	L	A	G	E	L	s	ι
1754	tt	gtcg	gct	ctt	gcgs	ecta	gac	age	eter	gtt	agg	age	cac	atg	aag	tat	aat	aga	tct	age	aaa	gat	atg	agt	aag	gtt	tet	teti	aag	ag
	L	s	A	L	A	A	G	0	L	v	R	s	Н	М	K	Y	Ν	R	s	s	K	D	М	s	K	v	S	s	*	
	aa	caat	age	ccc	ttca	igto	ete	Igad	cace	etc	acg	aac	tet	tgt	ลลล	gat	gat	tca	tta	aat	cata	ata	tat	aga	zag:	agai	7893	ages	aca	<i>σ</i> 0
	at	togt	act	agg	aata	aaa	tge	78.82	aca	 aaa		ccg	tac	cta	age	gaa	gat.	aaa	cct	tca	ctt	tat	gta	ctg	ttte	etg	ttti	o-e rt.gi	cag	se tt
	c†	ttet	gtt	tgt	aagt	111	age	tet	tgt	aat	cta	cag	aac	cgg	ta†	aar	gat	gaa	aag	atc	tag	tee	att	cgc.	ttt	tte	at	atco	cta	a†
	CP	ggtt	gte	-ъс сая	tget	gas	att	tas	atg	tat	cat	cta	ttt	-55 att	cat	gaa	tga	at†	tga	tat	cta:	agt	tta	-50 ctc:	 188:	าลอะ	188	าลอะ	ia.	
	~6	00.0		-46	- 601				6		240	Jud			- 40	oud	- 64		-6a			-60	2 cd				- 1446			

Fig. 1

Nucleotide sequences and deduced amino acid sequences of *DlHMG1* (Panel A) and *DlHMG2* (Panel B) and their encoded proteins. The amino acid sequences are shown in the one-letter code below the corresponding codons. The underlined nucleotides indicate the untranslated regions. Small asterisks "*" indicate the stop codons, and the boxed codons are the start codons. Bold letters on a grey background show the positions of the conserved motifs in HMGR proteins.

Multiple alignments of DIHMG1 and DIHMG2 with other HGMR proteins from Arabidopsis thaliana HMG1 (At; NP_17775), Cucumis melo (Cm; BAA36291) Lycopersicon esculentum (Le; AAB62581), Malus × domestica hmg1 (Md; AAK64657), Morus alba (Ma; AAD03789), Nicotiana sylvestris (Ns; CAA45181), Pisum sativum (Ps; AAL37041), Raphanus sativus (Rs; CAA48611), Tilia miqueliana (Tm; AAY68034), and Zea mays (Zm; CAA70440). Panel A, a low-resolution diagram of the full-length alignment of HGMR proteins to show the locations of the conserved motifs only. Panel B, conserved amino acid motifs only.

functionally conserved in their involvement in cytosolic isoprenoid biosynthesis.

A phylogenetic tree was generated from the deduced amino acid sequences of DIHMG1 and DIHMG2, and 21 other homologues (Figure 3). The HMGR proteins clustered into three major groups, those from fungi, vertebrates, and plants. The plant group was also subdivided into two sub-groups, those from monocotyledons and those from dicotyledons. In the dicotyledon subgroups, DIHMG1 and DIHMG2 were distributed in two

Phylogenic analysis of DlHMG1 and DlHMG2 (in bold) with other HMGR proteins from Amomum villosum (ACR02667), Arabidopsis thaliana HMG1 (NP177775), Arabidopsis thaliana HMG2 (NP179329), Cucumis melo (BAA36291), Hevea brasiliensis (AAQ63055), Homo sapiens (NP000850), Gibberella fujikuroi (CAA63970), Lycopersicon esculentum (AAB62581), Malus × domestica HMG1 (AAK64657), Malus × domestica HMG2 (ABQ52378), Morus alba (AAD03789), Nicotiana sylvestris (CAA45181), Oryza sativa (AAD08820), blakesleeanus (CAB97179), Phycomyces Raphanus sativus (CAA48611), Saccharomyces cerevisiae (P12683), Solanum tuberosum (P48020), Streptomyces sp.KO-3988 (BAD86804), Sus scrofa (ABF83891), Taxus media (AAQ82685), and Zea mays (CAA70440). (P48020). The phylogenetic tree was constructed by the neighbour-joining method based on the Phylip programme (http://bioweb.pasteur.fr/phylogeny/ intro-en.html), and bootstrapping was carried out on 500 replicates. The scale represents millions of years of evolution.

distinct classes (A and B). DlHMG1 was located in Class A with HMGR proteins from nine species including Cucumis melo (BAA36291) and Hevea brasiliensis (AAQ63055), while DIHMG2 was grouped in Class B with HMGR proteins from *Taxus* \times *media* (AAQ82685) and Malus × domestica (AAK64657). Interestingly, two HMGR proteins from A. thaliana (HMG1; NP_177775 and HMG2; NP_179329), and two from Malus \times domestica (HMG1; AAK64657 and HMG2; ABQ52378) were clustered in two different classes, as for DlHMG1 and DlHMG2, which is consistent with previous observations that the HMGR gene family in plants may contain at least two distinct functional members (Caelles et al., 1989). In addition, three HMGR genes from Solanaceous plants [tomato (Lycopersicon esculentum; AAB62581), tobacco (Nicotiana sylvestris; CAA45181), and potato (Solanum tuberosum; P48020)] were also grouped together in Class A. These results indicate that the distribution of HMGR genes in the phylogenetic tree largely reflected the evolutionary relationships between different organisms.

Transcriptional analysis of the DIHMG1 *and* DIHMG2 *genes during fruit development*

As in most other fruit, the growth curves of whole longan fruit and their individual tissues (i.e., pericarp, seed, and aril) display a typical sigmoidal pattern, which can be divided into three phases (Phase I, Phase II, and Phase III; Figure 4). Phase I [0 - 42 d after anthesis(DAA)] was characterised by growth of the pericarp and seed (mainly the seed coat), which accounted for 49.9% and 43.0% of whole fruit growth, respectively. Phase II (42 - 56 DAA) was a period characterised by rapid growth of the cotyledons inside the immature seeds. Growth during this period contributed to 49.5% of all fruit growth, while the arils and pericarp accounted for 24.1% and 26.4%, respectively. Phase III (56 - 81 DAA) was dominated by rapid growth of the aril, which represented 73.3% of all fruit growth, with growth of the pericarp and seeds gradually being suspended.

Northern blot analysis showed that *DlHMG1* gene expression was up-regulated during the early stage of fruit development. High levels of *DlHMG1* transcripts

Changes in individual tissue and total cumulative fresh weights of whole fruit, pericarp, arils, and seeds during longan fruit development. Phases I - III are defined in the text.

Changes in the accumulation of *DlHMG1* and *DlHMG2* mRNAs in the pericarp (Panel A), arils (Panel B), and seeds (Panel C) of longan fruit during development. Total RNA (10 µg loaded in each lane) was isolated from the different tissues at the various developmental stages (DAA), and was used for northern blot analysis by hybridisation with *DlHMG1* or *DlHMG2*-specific DIG-labelled probes. Ethidium bromide-stained rRNA is shown as a loading control.

were detected in Phase I and early in Phase II, but the level started to decrease at 49 DAA and dropped sharply at 63 DAA in all tissues. This dramatic reduction occurred primarily in Phase III, particularly in the arils (Figure 5B) and seeds (Figure 5C). Since rapid cell division was found to occur in Phase I, as well as in part of Phase II in growing longan fruit, the observed high level of *DlHMG1* expression in Phase I and Phase II correlated with active cell division events. Indeed, a

similar pattern has also been reported in other plants; for example, tomato (Narita and Grussem, 1989) and melon (Kato-Emori et al., 2001) fruit, where HMGR gene expression parallelled the stage of rapid cell division during early fruit development. Furthermore, overexpression of a melon HMGR gene in transgenic tomato plants caused rapid cell division and an enlarged fruit size (Kobayashi et al., 2003), directly demonstrating the role of HMGR in the regulation of cell division and fruitsize during fruit development. Conceivably, DlHMG1, like its counterparts in melon and tomato, may be involved in cell division and cell proliferation in longan fruit. However, DlHMG2 showed a different expression pattern from that observed for *DlHMG1* (Figure 5). DlHMG2 transcripts in the pericarp remained at a constant level throughout fruit development, but were much less abundant in the early stages compared to those of *DlHMG1* (Figure 5A).

In arils, the level of transcription of DlHMG2 was similar to that of DlHMG1 (Figure 5B), with a higher level of expression in Phase I and Phase II, followed by a sharp reduction in Phase III. In seeds, the DlHMG2 gene showed a periodic pattern, with expression peaks at 14 DAA in Phase I, at 49 – 56 DAA in Phase II, and at 84 DAA in Phase III (Figure 5C). The first two peaks of DlHMG2 gene expression coincided with vigorous cell division in the seed coat and seed embryo, respectively. The final peak of expression coincided with seed maturation and senescence. Hence, DlHMG2 may be involved in the regulation of periodic cell division and seed growth during fruit development.

Financial support was provided by the National Natural Science Foundation of China (Project No. 30871694), the Doctoral Fund of the Ministry of Education of China (Project No. 200805640003), and the China Litchi Industry Technology System (Project No. nycytx-32-03).

REFERENCES

- AOYAGI, K., BEYOU, A., MOON, K., FANG, L. and ULRICH, T. (1993). Isolation and characterization of cDNAs encoding wheat 3hydroxy-3-methylglutaryl-coenzyme A reductase. *Plant Physiology*, **102**, 623–628.
- CAELLES, C., FERRER, A., BALCELLS, L., HEGARDT, F. G. and BORONAT, A. (1989). Isolation and structural characterization of a cDNA encoding *Arabidopsis thaliana* 3-hydroxy-3-methylglutaryl coenzyme A reductase. *Plant Molecular Biology*, **13**, 627–638.
- CAMPOS, N. and BORONAT, A. (1995). Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. *The Plant Cell*, **7**, 2163–2174.
- CHAPPELL, J. (1995). The biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 521–547.
- CHYE, M. L., TAN, C. T. and CHUA, N. H. (1992). Three genes encode 3-hydroxy-3-methylglutaryl coenzyme A reductase in *Hevea* brasiliensis; *HMG1* and *HMG3* are differentially expressed. *Plant Molecular Biology*, **19**, 473–484.
- COWAN, A. K., MOORE-GORDON, C. S., BERTLING, I. and WOLSTEN-HOLME, B. N. (1997). Metabolic control of avocado fruit growth: Isoprenoid growth regulators and the reaction catalyzed by 3hydroxy-3-methylglutaryl coenzyme A reductase. *Plant Physiology*, **114**, 511–518.

- COWAN, A. K., CRIPPS, R. F., RICHINGS, E. W. and TAYLOR, N. J. (2001). Fruit size: Towards an understanding of the metabolic control of fruit growth using avocado as a model system. *Physiologia Plantarum*, **111**, 127–136.
- ENJUTO, M., BALCELLS, L., CAMPOS, N., CAELLES, C., ARRO, M. and BORONA, A. (1994). Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl coenzyme A reductase genes, which encode microsomal forms of the enzyme. Proceedings of the National Academy of Sciences of the USA, 91, 927–931.
- ISTVAN, E. S. and DEISENHOFER, J. (2000). The structure of the catalytic portion of human HMG-CoA reductase. *Biochimica et Biophysica Acta*, **1529**, 9–18.
- GOLDSTEIN, J. L. and BROWN, M. S. (1990). Regulation of the mevalonate pathway. *Nature*, **302**, 608–609.
- KOBAYASHI, T., KATO-EMORI, S., TOMITA, K. and EZURA, H. (2003). Transformation of tomato with the melon 3-hydroxy-3-methylglutaryl-coenzyme A reductase leads to increase of fruit size. *Plant Biotechnology*, **20**, 297–303.
- KATO-EMORI, S., HIGASHI, K., HOSOYA, K., KOBAYASHI, T. and EZURA, H. (2001). Cloning and characterization of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in melon (*Cucumis melo* L.). *Molecular Genetics and Genomics*, 256, 135–142.

- LANGER, M. B., RUJAN, T., MARTIN, W. and CROTEAU, R. (2000). Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. *Proceedings of the National Academy of Sciences of the USA*, 97, 13172–13177.
- LIAO, P., ZHOU, W., ZHANG, L., WANG, J., YAN, X. M., ZHANG, Y. and ZHANG, R. (2009). Molecular cloning, characterization and expression analysis of a new gene encoding 3-hydroxy-3methylglutaryl coenzyme A reductase from Salvia miltiorrhiza. Acta Physiologiae Plantarum, 31, 565–572.
- LIAO, Z., TAN, Q., CHAI, Y., ZUO, K., CHEN, M., GONG, Y., WANG, P., PI, Y., TAN, F., SUN, X. and TANG, K. (2004). Cloning and characterization of the gene encoding HMG-CoA reductase from *Taxus media* and its functional identification in yeast. *Functional Plant Biology*, **31**, 73–81.
- LU, W. and JIANG, Y. (2003). Cloning and sequence analysis of expansin genes in *Litchi chinensis* Sonn. fruits. *Scientia Agricultura Sinica*, **36**, 1525–1529.
- MALDONADO-MENDOZA, I. E., VINCENT, R. M. and NESSLER, C. L. (1997). Molecular characterization of three differentially expressed members of the *Camptotheca acuminate* 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family. *Plant Molecular Biology*, **34**, 781–790.
- MONFAR, M., CAELLES, C., BALCELLS, L., FERRER, A., HEGARDT, F. and BORONAT, A. (1990). Molecular cloning and characterization of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. In: *Biochemistry of the Mevalonic Acid Pathway to Terpenoids: Recent Advances in Phytochemistry*. (Towers, G. H. N. and Stafford, H. A., Eds.). Plenum Press, New York, USA. 83–97.
- NARITA, J. O. and GRUISSEM, W. (1989). Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. *The Plant Cell*, **1**, 181–190.

- NELSON, A. J., DOERNER, P. W., ZHU, Q. and LAMB, C. J. (1994). Isolation of a monocot 3-hydroxy-3-methylglutaryl coenzyme A reductase gene that is elicitor-inducible. *Plant Molecular Biology*, 25, 401–402.
- OLMSTEAD, J. W., LEZZONI, A. F. and WHITING, M. D. (2007). Genotypic differences in sweet cherry fruit size are primarily a function of cell number. *Journal of the American Society for Horticultural Science*, **132**, 697–703.
- RUPASINGHE, H. P. V., ALMQUIST, K. C., PALIYATH, G. and MURR, D. P. (2001). Cloning of *hmg1* and *hmg2* cDNAs encoding 3hydroxy-3-methylglutaryl coenzyme A reductase and their expression and activity in relation to α-farnesene synthesis in apple. *Plant Physiology and Biochemistry*, **39**, 933–947.
- STERMER, B. A., BIANCHINI, G. M. and KORTH, K. L. (1994). Regulation of HMG-CoA reductase activity in plants. *Journal* of Lipid Research, 35, 1133–1140.
- WAN, C. Y. and WILKINS, T. A. (1994). A modified hot borate method significantly enhances the yield of high quality RNA from cotton (*Gossypium hirsutum*). Analytical Biochemistry, **223**, 7–12.
- WANG, Y., DARNAY, B. G. and RODWELL, W. (1990). Identification of the principal catalytically important acidic residues of 3hydroxy-3-methylglutaryl coenzyme A reductase. *Journal of Biological Chemistry*, 265, 21634–21641.
- XIA, R., LU, W., LI, J. and DU, J. (2006). Programming design of degenerate primers and the cloning of litchi HMGR gene fragments. *Journal of Fruit Science*, 23, 903–906.
- XIA, R., LU, W. and LI, J. (2008). A modified method of amplifying the 5'-end cDNA sequence. Acta Horticulturae Sinica, 35, 1533–1538.